Displaying similar documents to “Convergence theorems by hybrid projection methods for Lipschitz-continuous monotone mappings and a countable family of nonexpansive mappings”

The super fixed point property for asymptotically nonexpansive mappings

Andrzej Wiśnicki (2012)

Fundamenta Mathematicae

Similarity:

We show that the super fixed point property for nonexpansive mappings and for asymptotically nonexpansive mappings in the intermediate sense are equivalent. As a consequence, we obtain fixed point theorems for asymptotically nonexpansive mappings in uniformly nonsquare and uniformly noncreasy Banach spaces. The results are generalized to commuting families of asymptotically nonexpansive mappings.

Best proximity point for proximal Berinde nonexpansive mappings on starshaped sets

Nuttawut Bunlue, Suthep Suantai (2018)

Archivum Mathematicum

Similarity:

In this paper, we introduce the new concept of proximal mapping, namely proximal weak contractions and proximal Berinde nonexpansive mappings. We prove the existence of best proximity points for proximal weak contractions in metric spaces, and for proximal Berinde nonexpansive mappings on starshape sets in Banach spaces. Examples supporting our main results are also given. Our main results extend and generalize some of well-known best proximity point theorems of proximal nonexpansive...

Convergence theorems for a finite family of nonexpansive and asymptotically nonexpansive mappings

Kittipong Sitthikul, Satit Saejung (2009)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

In this paper, weak and strong convergence of finite step iteration sequences to a common fixed point for a pair of a finite family of nonexpansive mappings and a finite family of asymptotically nonexpansive mappings in a nonempty closed convex subset of uniformly convex Banach spaces are presented.

A note on Picard iterates of nonexpansive mappings

Eun Suk Kim, W. A. Kirk (2001)

Annales Polonici Mathematici

Similarity:

Let X be a Banach space, C a closed subset of X, and T:C → C a nonexpansive mapping. It has recently been shown that if X is reflexive and locally uniformly convex and if the fixed point set F(T) of T has nonempty interior then the Picard iterates of the mapping T always converge to a point of F(T). In this paper it is shown that if T is assumed to be asymptotically regular, this condition can be weakened much further. Finally, some observations are made about the geometric conditions...

Strong convergence theorems of a new hybrid projection method for finite family of two hemi-relatively nonexpansive mappings in a Banach space

Kriengsak Wattanawitoon, Poom Kumam (2011)

Banach Center Publications

Similarity:

In this paper, we prove strong convergence theorems of the hybrid projection algorithms for finite family of two hemi-relatively nonexpansive mappings in a Banach space. Using this result, we also discuss the resolvents of two maximal monotone operators in a Banach space. Our results modify and improve the recently ones announced by Plubtieng and Ungchittrakool [Strong convergence theorems for a common fixed point of two relatively nonexpansive mappings in a Banach space, J. Approx....

On the fixed points of nonexpansive mappings in direct sums of Banach spaces

Andrzej Wiśnicki (2011)

Studia Mathematica

Similarity:

We show that if a Banach space X has the weak fixed point property for nonexpansive mappings and Y has the generalized Gossez-Lami Dozo property or is uniformly convex in every direction, then the direct sum X ⊕ Y with a strictly monotone norm has the weak fixed point property. The result is new even if Y is finite-dimensional.

Proximal normal structure and relatively nonexpansive mappings

A. Anthony Eldred, W. A. Kirk, P. Veeramani (2005)

Studia Mathematica

Similarity:

The notion of proximal normal structure is introduced and used to study mappings that are "relatively nonexpansive" in the sense that they are defined on the union of two subsets A and B of a Banach space X and satisfy ∥ Tx-Ty∥ ≤ ∥ x-y∥ for all x ∈ A, y ∈ B. It is shown that if A and B are weakly compact and convex, and if the pair (A,B) has proximal normal structure, then a relatively nonexpansive mapping T: A ∪ B → A ∪ B satisfying (i) T(A) ⊆ B and T(B) ⊆ A, has a proximal point in...