Displaying similar documents to “Haar null and non-dominating sets”

C ( X ) can sometimes determine X without X being realcompact

Melvin Henriksen, Biswajit Mitra (2005)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

As usual C ( X ) will denote the ring of real-valued continuous functions on a Tychonoff space X . It is well-known that if X and Y are realcompact spaces such that C ( X ) and C ( Y ) are isomorphic, then X and Y are homeomorphic; that is C ( X ) X . The restriction to realcompact spaces stems from the fact that C ( X ) and C ( υ X ) are isomorphic, where υ X is the (Hewitt) realcompactification of X . In this note, a class of locally compact spaces X that includes properly the class of locally...

On nonmeasurable images

Robert Rałowski, Szymon Żeberski (2010)

Czechoslovak Mathematical Journal

Similarity:

Let ( X , 𝕀 ) be a Polish ideal space and let T be any set. We show that under some conditions on a relation R T 2 × X it is possible to find a set A T such that R ( A 2 ) is completely 𝕀 -nonmeasurable, i.e, it is 𝕀 -nonmeasurable in every positive Borel set. We also obtain such a set A T simultaneously for continuum many relations ( R α ) α < 2 ω . Our results generalize those from the papers of K. Ciesielski, H. Fejzić, C. Freiling and M. Kysiak.

A characterization of the meager ideal

Piotr Zakrzewski (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We give a classical proof of the theorem stating that the σ -ideal of meager sets is the unique σ -ideal on a Polish group, generated by closed sets which is invariant under translations and ergodic.

Cardinal characteristics of the ideal of Haar null sets

Taras O. Banakh (2004)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We calculate the cardinal characteristics of the σ -ideal 𝒩 ( G ) of Haar null subsets of a Polish non-locally compact group G with invariant metric and show that cov ( 𝒩 ( G ) ) 𝔟 max { 𝔡 , non ( 𝒩 ) } non ( 𝒩 ( G ) ) cof ( 𝒩 ( G ) ) > min { 𝔡 , non ( 𝒩 ) } . If G = n 0 G n is the product of abelian locally compact groups G n , then add ( 𝒩 ( G ) ) = add ( 𝒩 ) , cov ( 𝒩 ( G ) ) = min { 𝔟 , cov ( 𝒩 ) } , non ( 𝒩 ( G ) ) = max { 𝔡 , non ( 𝒩 ) } and cof ( 𝒩 ( G ) ) cof ( 𝒩 ) , where 𝒩 is the ideal of Lebesgue null subsets on the real line. Martin Axiom implies that cof ( 𝒩 ( G ) ) > 2 0 and hence G contains a Haar null subset that cannot be enlarged to a Borel or projective Haar null subset of G . This gives a negative (consistent) answer to a...