Displaying similar documents to “Polynomial inequalities in Banach spaces”

Cantor-Schroeder-Bernstein quadruples for Banach spaces

Elói Medina Galego (2008)

Colloquium Mathematicae

Similarity:

Two Banach spaces X and Y are symmetrically complemented in each other if there exists a supplement of Y in X which is isomorphic to some supplement of X in Y. In 1996, W. T. Gowers solved the Schroeder-Bernstein (or Cantor-Bernstein) Problem for Banach spaces by constructing two non-isomorphic Banach spaces which are symmetrically complemented in each other. In this paper, we show how to modify such a symmetry in order to ensure that X is isomorphic to Y. To do this, first we introduce...

Multivariate polynomial inequalities viapluripotential theory and subanalytic geometry methods

W. Pleśniak (2006)

Banach Center Publications

Similarity:

We give a state-of-the-art survey of investigations concerning multivariate polynomial inequalities. A satisfactory theory of such inequalities has been developed due to applications of both the Gabrielov-Hironaka-Łojasiewicz subanalytic geometry and pluripotential methods based on the complex Monge-Ampère operator. Such an approach permits one to study various inequalities for polynomials restricted not only to nice (nonpluripolar) compact subsets of ℝⁿ or ℂⁿ but also their versions...

Polynomial inequalities on algebraic sets

M. Baran, W. Pleśniak (2000)

Studia Mathematica

Similarity:

We give an estimate of Siciak’s extremal function for compact subsets of algebraic varieties in n (resp. n ). As an application we obtain Bernstein-Walsh and tangential Markov type inequalities for (the traces of) polynomials on algebraic sets.

The Schroeder-Bernstein index for Banach spaces

Elói Medina Galego (2004)

Studia Mathematica

Similarity:

In relation to some Banach spaces recently constructed by W. T. Gowers and B. Maurey, we introduce the notion of Schroeder-Bernstein index SBi(X) for every Banach space X. This index is related to complemented subspaces of X which contain some complemented copy of X. Then we establish the existence of a Banach space E which is not isomorphic to Eⁿ for every n ∈ ℕ, n ≥ 2, but has a complemented subspace isomorphic to E². In particular, SBi(E) is uncountable. The construction of E follows...

Convexity around the Unit of a Banach Algebra

Kadets, Vladimir, Katkova, Olga, Martín, Miguel, Vishnyakova, Anna (2008)

Serdica Mathematical Journal

Similarity:

2000 Mathematics Subject Classification: Primary: 46B20. Secondary: 46H99, 47A12. We estimate the (midpoint) modulus of convexity at the unit 1 of a Banach algebra A showing that inf {max±||1 ± x|| − 1 : x ∈ A, ||x||=ε} ≥ (π/4e)ε²+o(ε²) as ε → 0. We also give a characterization of two-dimensional subspaces of Banach algebras containing the identity in terms of polynomial inequalities.

Separating polynomials on Banach spaces.

R. Gonzalo, J. A. Jaramillo (1997)

Extracta Mathematicae

Similarity:

In this paper we survey some recent results concerning separating polynomials on real Banach spaces. By this we mean a polynomial which separates the origin from the unit sphere of the space, thus providing an analog of the separating quadratic form on Hilbert space.

Convex inequalities and the Hahn-Banach Theorem

Hoang Tu Y

Similarity:

CONTENTSIntroduction............................................................................................................................................................................... 5§ 1. Finite systems of convex inequalities.......................................................................................................................... 6§ 2. Infinite systems of convex inequalities...........................................................................................................................

Local polynomials are polynomials

C. Fong, G. Lumer, E. Nordgren, H. Radjavi, P. Rosenthal (1995)

Studia Mathematica

Similarity:

We prove that a function f is a polynomial if G◦f is a polynomial for every bounded linear functional G. We also show that an operator-valued function is a polynomial if it is locally a polynomial.