Displaying similar documents to “Deformations of structures, embedding of a Riemannian manifold in a Kählerian one and geometric antigravitation”

The natural transformations between T-th order prolongation of tangent and cotangent bundles over Riemannian manifolds

Mariusz Plaszczyk (2015)

Annales UMCS, Mathematica

Similarity:

If (M,g) is a Riemannian manifold then there is the well-known base preserving vector bundle isomorphism TM → T* M given by v → g(v,−) between the tangent TM and the cotangent T* M bundles of M. In the present note first we generalize this isomorphism to the one JrTM → JrTM between the r-th order prolongation JrTM of tangent TM and the r-th order prolongation JrT M of cotangent TM bundles of M. Further we describe all base preserving vector bundle maps DM(g) : JrTM → JrT* M depending...

Anti-invariant Riemannian submersions from almost Hermitian manifolds

Bayram Ṣahin (2010)

Open Mathematics

Similarity:

We introduce anti-invariant Riemannian submersions from almost Hermitian manifolds onto Riemannian manifolds. We give an example, investigate the geometry of foliations which are arisen from the definition of a Riemannian submersion and check the harmonicity of such submersions. We also find necessary and sufficient conditions for a Langrangian Riemannian submersion, a special anti-invariant Riemannian submersion, to be totally geodesic. Moreover, we obtain decomposition theorems for...

On almost hyperHermitian structures on Riemannian manifolds and tangent bundles

Serge Bogdanovich, Alexander Ermolitski (2004)

Open Mathematics

Similarity:

Some results concerning almost hyperHermitian structures are considered, using the notions of the canonical connection and the second fundamental tensor field h of a structure on a Riemannian manifold which were introduced by the second author. With the help of any metric connection ˜ on an almost Hermitian manifold M an almost hyperHermitian structure can be constructed in the defined way on the tangent bundle TM. A similar construction was considered in [6], [7]. This structure includes...

The natural transformations between r-th order prolongation of tangent and cotangent bundles over Riemannian manifolds

Mariusz Plaszczyk (2015)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

If (M, g) is a Riemannian manifold then there is the well-known base preserving vector bundle isomorphism TM → T*M given by v → g(v, –) between the tangent TM and the cotangent T*M bundles of M. In the present note first we generalize this isomorphism to the one JrTM → JrT*M between the r-th order prolongation JrTM of tangent TM and the r-th order prolongation JrT*M of cotangent T*M bundles of M. Further we describe all base preserving vector bundle maps DM(g) : JrTM → JrT*M depending...

The natural transformations between r-tangent and r-cotangent bundles over Riemannian manifolds

Jan Kurek, Włodzimierz M. Mikulski (2015)

Annales UMCS, Mathematica

Similarity:

If (M,g) is a Riemannian manifold, we have the well-known base preserving vector bundle isomorphism TM ≅ T∗ M given by υ → g(υ,−) between the tangent TM and the cotangent T∗ M bundles of M. In the present note, we generalize this isomorphism to the one T(r)M ≅ Tr∗ M between the r-th order vector tangent T(r)M = (Jr(M,R)0)∗ and the r-th order cotangent Tr∗ M = Jr(M,R)0 bundles of M. Next, we describe all base preserving vector bundle maps CM(g) : T(r)M → Tr∗ M depending on a Riemannian...