The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the equation u t = Δ u + M e x p u / e x p u d x in planar domains”

Single-point blow-up for a semilinear parabolic system

Ph. Souplet (2009)

Journal of the European Mathematical Society

Similarity:

We consider positive solutions of the system u t - Δ u = v p ; v t - Δ v = u q in a ball or in the whole space, with p , q > 1 . Relatively little is known on the blow-up set for semilinear parabolic systems and, up to now, no result was available for this basic system except for the very special case p = q . Here we prove single-point blow-up for a large class of radial decreasing solutions. This in particular solves a problem left open in a paper of A. Friedman and Y. Giga (1987). We also obtain lower pointwise estimates for...

The analysis of blow-up solutions to a semilinear parabolic system with weighted localized terms

Haihua Lu, Feng Wang, Qiaoyun Jiang (2011)

Annales Polonici Mathematici

Similarity:

This paper deals with blow-up properties of solutions to a semilinear parabolic system with weighted localized terms, subject to the homogeneous Dirichlet boundary conditions. We investigate the influence of the three factors: localized sources u p ( x , t ) , vⁿ(x₀,t), local sources u m ( x , t ) , v q ( x , t ) , and weight functions a(x),b(x), on the asymptotic behavior of solutions. We obtain the uniform blow-up profiles not only for the cases m,q ≤ 1 or m,q > 1, but also for m > 1 q < 1 or m < 1 q >...

Absence of global solutions to a class of nonlinear parabolic inequalities

M. Guedda (2002)

Colloquium Mathematicae

Similarity:

We study the absence of nonnegative global solutions to parabolic inequalities of the type u t - ( - Δ ) β / 2 u - V ( x ) u + h ( x , t ) u p , where ( - Δ ) β / 2 , 0 < β ≤ 2, is the β/2 fractional power of the Laplacian. We give a sufficient condition which implies that the only global solution is trivial if p > 1 is small. Among other properties, we derive a necessary condition for the existence of local and global nonnegative solutions to the above problem for the function V satisfying V ( x ) a | x | - b , where a ≥ 0, b > 0, p > 1 and V₊(x): = maxV(x),0....

Global Attractors for a Class of Semilinear Degenerate Parabolic Equations on N

Cung The Anh, Le Thi Thuy (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We prove the existence of global attractors for the following semilinear degenerate parabolic equation on N : ∂u/∂t - div(σ(x)∇ u) + λu + f(x,u) = g(x), under a new condition concerning the variable nonnegative diffusivity σ(·) and for an arbitrary polynomial growth order of the nonlinearity f. To overcome some difficulties caused by the lack of compactness of the embeddings, these results are proved by combining the tail estimates method and the asymptotic a priori estimate method. ...

Bi-spaces global attractors in abstract parabolic equations

J. W. Cholewa, T. Dłotko (2003)

Banach Center Publications

Similarity:

An abstract semilinear parabolic equation in a Banach space X is considered. Under general assumptions on nonlinearity this problem is shown to generate a bounded dissipative semigroup on X α . This semigroup possesses an ( X α - Z ) -global attractor that is closed, bounded, invariant in X α , and attracts bounded subsets of X α in a ’weaker’ topology of an auxiliary Banach space Z. The abstract approach is finally applied to the scalar parabolic equation in Rⁿ and to the partly dissipative system. ...

Asymptotically self-similar solutions for the parabolic system modelling chemotaxis

Yūki Naito (2006)

Banach Center Publications

Similarity:

We consider a nonlinear parabolic system modelling chemotaxis u t = · ( u - u v ) , v t = Δ v + u in ℝ², t > 0. We first prove the existence of time-global solutions, including self-similar solutions, for small initial data, and then show the asymptotically self-similar behavior for a class of general solutions.

Blowup rates for nonlinear heat equations with gradient terms and for parabolic inequalities

Philippe Souplet, Slim Tayachi (2001)

Colloquium Mathematicae

Similarity:

Consider the nonlinear heat equation (E): u t - Δ u = | u | p - 1 u + b | u | q . We prove that for a large class of radial, positive, nonglobal solutions of (E), one has the blowup estimates C ( T - t ) - 1 / ( p - 1 ) | | u ( t ) | | C ( T - t ) - 1 / ( p - 1 ) . Also, as an application of our method, we obtain the same upper estimate if u only satisfies the nonlinear parabolic inequality u t - u x x u p . More general inequalities of the form u t - u x x f ( u ) with, for instance, f ( u ) = ( 1 + u ) l o g p ( 1 + u ) are also treated. Our results show that for solutions of the parabolic inequality, one has essentially the same estimates as for solutions...

Isomorphic classification of the tensor products E ( e x p α i ) ̂ E ( e x p β j )

Peter Chalov, Vyacheslav Zakharyuta (2011)

Studia Mathematica

Similarity:

It is proved, using so-called multirectangular invariants, that the condition αβ = α̃β̃ is sufficient for the isomorphism of the spaces E ( e x p α i ) ̂ E ( e x p β j ) and E ( e x p α ̃ i ) ̂ E ( e x p β ̃ j ) . This solves a problem posed in [14, 15, 1]. Notice that the necessity has been proved earlier in [14].

Existence results for a class of nonlinear parabolic equations with two lower order terms

Ahmed Aberqi, Jaouad Bennouna, M. Hammoumi, Mounir Mekkour, Ahmed Youssfi (2014)

Applicationes Mathematicae

Similarity:

We investigate the existence of renormalized solutions for some nonlinear parabolic problems associated to equations of the form ⎧ ( e β u - 1 ) / t - d i v ( | u | p - 2 u ) + d i v ( c ( x , t ) | u | s - 1 u ) + b ( x , t ) | u | r = f in Q = Ω×(0,T), ⎨ u(x,t) = 0 on ∂Ω ×(0,T), ⎩ ( e β u - 1 ) ( x , 0 ) = ( e β u - 1 ) ( x ) in Ω. with s = (N+2)/(N+p) (p-1), c ( x , t ) ( L τ ( Q T ) ) N , τ = (N+p)/(p-1), r = (N(p-1) + p)/(N+2), b ( x , t ) L N + 2 , 1 ( Q T ) and f ∈ L¹(Q).

On the first sign change in Mertens' theorem

Jan Büthe (2015)

Acta Arithmetica

Similarity:

The function p x 1 / p - l o g l o g ( x ) - M is known to change sign infinitely often, but so far all calculated values are positive. In this paper we prove that the first sign change occurs well before exp(495.702833165).

Concentration-Compactness Principle for embedding into multiple exponential spaces on unbounded domains

Robert Černý (2015)

Czechoslovak Mathematical Journal

Similarity:

Let Ω n be a domain and let α < n - 1 . We prove the Concentration-Compactness Principle for the embedding of the space W 0 1 L n log α L ( Ω ) into an Orlicz space corresponding to a Young function which behaves like exp ( t n / ( n - 1 - α ) ) for large t . We also give the result for the embedding into multiple exponential spaces. Our main result is Theorem where we show that if one passes to unbounded domains, then, after the usual modification of the integrand in the Moser functional, the statement of the Concentration-Compactnes Principle...

L p -decay of solutions to dissipative-dispersive perturbations of conservation laws

Grzegorz Karch (1997)

Annales Polonici Mathematici

Similarity:

We study the decay in time of the spatial L p -norm (1 ≤ p ≤ ∞) of solutions to parabolic conservation laws with dispersive and dissipative terms added uₜ - uₓₓₜ - νuₓₓ + buₓ = f(u)ₓ or uₜ + uₓₓₓ - νuₓₓ + buₓ = f(u)ₓ, and we show that under general assumptions about the nonlinearity, solutions of the nonlinear equations have the same long time behavior as their linearizations at the zero solution.

On the long-time behaviour of solutions of the p-Laplacian parabolic system

Paweł Goldstein (2008)

Colloquium Mathematicae

Similarity:

Convergence of global solutions to stationary solutions for a class of degenerate parabolic systems related to the p-Laplacian operator is proved. A similar result is obtained for a variable exponent p. In the case of p constant, the convergence is proved to be ¹ l o c , and in the variable exponent case, L² and W 1 , p ( x ) -weak.

Divergent solutions to the 5D Hartree equations

Daomin Cao, Qing Guo (2011)

Colloquium Mathematicae

Similarity:

We consider the Cauchy problem for the focusing Hartree equation i u t + Δ u + ( | · | - 3 | u | ² ) u = 0 in ℝ⁵ with initial data in H¹, and study the divergence property of infinite-variance and nonradial solutions. For the ground state solution of - Q + Δ Q + ( | · | - 3 | Q | ² ) Q = 0 in ℝ⁵, we prove that if u₀ ∈ H¹ satisfies M(u₀)E(u₀) < M(Q)E(Q) and ||∇u₀||₂||u₀||₂ > ||∇Q||₂||Q||₂, then the corresponding solution u(t) either blows up in finite forward time, or exists globally for positive time and there exists a time sequence tₙ → ∞ such that ||∇u(tₙ)||₂...