Concentration-Compactness Principle for embedding into multiple exponential spaces on unbounded domains

Robert Černý

Czechoslovak Mathematical Journal (2015)

  • Volume: 65, Issue: 2, page 493-516
  • ISSN: 0011-4642

Abstract

top
Let Ω n be a domain and let α < n - 1 . We prove the Concentration-Compactness Principle for the embedding of the space W 0 1 L n log α L ( Ω ) into an Orlicz space corresponding to a Young function which behaves like exp ( t n / ( n - 1 - α ) ) for large t . We also give the result for the embedding into multiple exponential spaces. Our main result is Theorem where we show that if one passes to unbounded domains, then, after the usual modification of the integrand in the Moser functional, the statement of the Concentration-Compactnes Principle is very similar to the statement in the case of a bounded domain. In particular, in the case of a nontrivial weak limit the borderline exponent is still given by the formula P : = ( 1 - Φ ( | u | ) L 1 ( n ) ) - 1 / ( n - 1 ) .

How to cite

top

Černý, Robert. "Concentration-Compactness Principle for embedding into multiple exponential spaces on unbounded domains." Czechoslovak Mathematical Journal 65.2 (2015): 493-516. <http://eudml.org/doc/270126>.

@article{Černý2015,
abstract = {Let $\Omega \subset \mathbb \{R\}^n$ be a domain and let $\alpha <n-1$. We prove the Concentration-Compactness Principle for the embedding of the space $W_0^1L^n\log ^\{\alpha \}L(\Omega )$ into an Orlicz space corresponding to a Young function which behaves like $\exp (t^\{\{n\}/\{(n-1-\alpha )\}\})$ for large $t$. We also give the result for the embedding into multiple exponential spaces. Our main result is Theorem where we show that if one passes to unbounded domains, then, after the usual modification of the integrand in the Moser functional, the statement of the Concentration-Compactnes Principle is very similar to the statement in the case of a bounded domain. In particular, in the case of a nontrivial weak limit the borderline exponent is still given by the formula \[ P:=(1-\Vert \Phi (|\nabla u|)\Vert \_\{L^1(\mathbb \{R\}^n)\})^\{-\{1\}/\{(n-1)\}\}. \]},
author = {Černý, Robert},
journal = {Czechoslovak Mathematical Journal},
keywords = {Sobolev space; Orlicz-Sobolev space; Moser-Trudinger inequality; sharp constant; concentration-compactness principle},
language = {eng},
number = {2},
pages = {493-516},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Concentration-Compactness Principle for embedding into multiple exponential spaces on unbounded domains},
url = {http://eudml.org/doc/270126},
volume = {65},
year = {2015},
}

TY - JOUR
AU - Černý, Robert
TI - Concentration-Compactness Principle for embedding into multiple exponential spaces on unbounded domains
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 2
SP - 493
EP - 516
AB - Let $\Omega \subset \mathbb {R}^n$ be a domain and let $\alpha <n-1$. We prove the Concentration-Compactness Principle for the embedding of the space $W_0^1L^n\log ^{\alpha }L(\Omega )$ into an Orlicz space corresponding to a Young function which behaves like $\exp (t^{{n}/{(n-1-\alpha )}})$ for large $t$. We also give the result for the embedding into multiple exponential spaces. Our main result is Theorem where we show that if one passes to unbounded domains, then, after the usual modification of the integrand in the Moser functional, the statement of the Concentration-Compactnes Principle is very similar to the statement in the case of a bounded domain. In particular, in the case of a nontrivial weak limit the borderline exponent is still given by the formula \[ P:=(1-\Vert \Phi (|\nabla u|)\Vert _{L^1(\mathbb {R}^n)})^{-{1}/{(n-1)}}. \]
LA - eng
KW - Sobolev space; Orlicz-Sobolev space; Moser-Trudinger inequality; sharp constant; concentration-compactness principle
UR - http://eudml.org/doc/270126
ER -

References

top
  1. Adachi, S., Tanaka, K., 10.1090/S0002-9939-99-05180-1, Proc. Am. Math. Soc. 128 2051-2057 (2000). (2000) MR1646323DOI10.1090/S0002-9939-99-05180-1
  2. Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the n -Laplacian, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 17 393-413 (1990). (1990) Zbl0732.35028MR1079983
  3. Battaglia, L., Mancini, G., Remarks on the Moser-Trudinger inequality, Adv. Nonlinear Anal. 2 389-425 (2013). (2013) Zbl1290.46025MR3199739
  4. Carleson, L., Chang, S.-Y. A., On the existence of an extremal function for an inequality of J. Moser, Bull. Sci. Math., II. Sér. 110 113-127 (1986), French summary. (1986) MR0878016
  5. Černý, R., Concentration-compactness principle for embedding into multiple exponential spaces, Math. Inequal. Appl. 15 165-198 (2012). (2012) Zbl1236.46027MR2919441
  6. Černý, R., 10.1007/s00030-011-0143-0, NoDEA, Nonlinear Differ. Equ. Appl. 19 575-608 (2012). (2012) Zbl1262.46025MR2984597DOI10.1007/s00030-011-0143-0
  7. Černý, R., 10.2478/s11533-011-0102-3, Cent. Eur. J. Math. 10 590-602 (2012). (2012) Zbl1272.46019MR2893423DOI10.2478/s11533-011-0102-3
  8. Černý, R., Cianchi, A., Hencl, S., 10.1007/s10231-011-0220-3, Ann. Mat. Pura Appl. (4) 192 225-243 (2013). (2013) MR3035137DOI10.1007/s10231-011-0220-3
  9. Černý, R., Gurka, P., Hencl, S., 10.4171/ZAA/1439, Z. Anal. Anwend. 30 355-375 (2011). (2011) Zbl1225.46026MR2819500DOI10.4171/ZAA/1439
  10. Černý, R., Gurka, P., Hencl, S., 10.1016/j.na.2011.05.015, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 5189-5204 (2011). (2011) Zbl1225.35062MR2810699DOI10.1016/j.na.2011.05.015
  11. Černý, R., Mašková, S., 10.1007/s10587-010-0048-9, Czech. Math. J. 60 751-782 (2010). (2010) Zbl1224.46064MR2672414DOI10.1007/s10587-010-0048-9
  12. Chabrowski, J., 10.1007/BF01187898, Calc. Var. Partial Differ. Equ. 3 493-512 (1995). (1995) Zbl0838.35035MR1385297DOI10.1007/BF01187898
  13. Cianchi, A., 10.1512/iumj.1996.45.1958, Indiana Univ. Math. J. 45 39-65 (1996). (1996) Zbl0860.46022MR1406683DOI10.1512/iumj.1996.45.1958
  14. Figueiredo, D. G. de, Miyagaki, O. H., Ruf, B., 10.1007/BF01205003, Calc. Var. Partial Differ. Equ. 3 139-153 (1995). (1995) MR1386960DOI10.1007/BF01205003
  15. 'O, J. M. do, 10.1155/S1085337597000419, Abstr. Appl. Anal. 2 301-315 (1997). (1997) MR1704875DOI10.1155/S1085337597000419
  16. Ó, J. M. do, Souza, M. de, Medeiros, E. de, Severo, U., 10.1016/j.jde.2013.10.016, J. Differ. Equations 256 1317-1349 (2014). (2014) MR3145759DOI10.1016/j.jde.2013.10.016
  17. Ó, J. M. do, Medeiros, E., Severo, U., 10.1016/j.jde.2008.11.020, J. Differ. Equations 246 1363-1386 (2009). (2009) MR2488689DOI10.1016/j.jde.2008.11.020
  18. Edmunds, D. E., Gurka, P., Opic, B., 10.1090/S0002-9939-98-04327-5, Proc. Am. Math. Soc. 126 2417-2425 (1998). (1998) Zbl0895.46020MR1451796DOI10.1090/S0002-9939-98-04327-5
  19. Edmunds, D. E., Gurka, P., Opic, B., 10.1006/jfan.1996.3037, J. Funct. Anal. 146 116-150 (1997). (1997) Zbl0934.46036MR1446377DOI10.1006/jfan.1996.3037
  20. Edmunds, D. E., Gurka, P., Opic, B., 10.1017/S0308210500023210, Proc. R. Soc. Edinb., Sect. A 126 995-1009 (1996). (1996) Zbl0860.46024MR1415818DOI10.1017/S0308210500023210
  21. Edmunds, D. E., Gurka, P., Opic, B., Double exponential integrability, Bessel potentials and embedding theorems, Stud. Math. 115 151-181 (1995). (1995) Zbl0829.47024MR1347439
  22. Edmunds, D. E., Gurka, P., Opic, B., 10.1512/iumj.1995.44.1977, Indiana Univ. Math. J. 44 19-43 (1995). (1995) Zbl0826.47021MR1336431DOI10.1512/iumj.1995.44.1977
  23. Edmunds, D. E., Krbec, M., Two limiting cases of Sobolev imbeddings, Houston J. Math. 21 119-128 (1995). (1995) Zbl0835.46027MR1331250
  24. Fusco, N., Lions, P.-L., Sbordone, C., 10.1090/S0002-9939-96-03136-X, Proc. Am. Math. Soc. 124 561-565 (1996). (1996) Zbl0841.46023MR1301025DOI10.1090/S0002-9939-96-03136-X
  25. Hencl, S., 10.1016/S0022-1236(02)00172-6, J. Funct. Anal. 204 (2003), 196-227. (2003) Zbl1034.46031MR2004749DOI10.1016/S0022-1236(02)00172-6
  26. Li, Y., Ruf, B., 10.1512/iumj.2008.57.3137, Indiana Univ. Math. J. 57 451-480 (2008). (2008) MR2400264DOI10.1512/iumj.2008.57.3137
  27. Lions, P.-L., 10.4171/RMI/6, Rev. Mat. Iberoam. 1 (1985), 145-201. (1985) Zbl0704.49005MR0834360DOI10.4171/RMI/6
  28. Moser, J., 10.1512/iumj.1971.20.20101, Indiana Univ. Math. J. 20 1077-1092 (1971). (1971) Zbl0213.13001MR0301504DOI10.1512/iumj.1971.20.20101
  29. Opic, B., Pick, L., On generalized Lorentz-Zygmund spaces, Math. Inequal. Appl. 2 391-467 (1999). (1999) Zbl0956.46020MR1698383
  30. Rao, M. M., Ren, Z. D., Theory of Orlicz Spaces, Pure and Applied Mathematics 146 Marcel Dekker, New York (1991). (1991) Zbl0724.46032MR1113700
  31. Ruf, B., 10.1016/j.jfa.2004.06.013, J. Funct. Anal. 219 340-367 (2005). (2005) MR2109256DOI10.1016/j.jfa.2004.06.013
  32. Talenti, G., Inequalities in rearrangement invariant function spaces, Nonlinear Analysis, Function Spaces and Applications. Vol. 5 M. Krbec et al. Proc. Conf., Praha, 1994. Prometheus Publishing House Praha (1994), 177-230. (1994) Zbl0872.46020MR1322313
  33. Trudinger, N. S., On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 473-484 (1967). (1967) Zbl0163.36402MR0216286

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.