Concentration-Compactness Principle for embedding into multiple exponential spaces on unbounded domains
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 2, page 493-516
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topČerný, Robert. "Concentration-Compactness Principle for embedding into multiple exponential spaces on unbounded domains." Czechoslovak Mathematical Journal 65.2 (2015): 493-516. <http://eudml.org/doc/270126>.
@article{Černý2015,
abstract = {Let $\Omega \subset \mathbb \{R\}^n$ be a domain and let $\alpha <n-1$. We prove the Concentration-Compactness Principle for the embedding of the space $W_0^1L^n\log ^\{\alpha \}L(\Omega )$ into an Orlicz space corresponding to a Young function which behaves like $\exp (t^\{\{n\}/\{(n-1-\alpha )\}\})$ for large $t$. We also give the result for the embedding into multiple exponential spaces. Our main result is Theorem where we show that if one passes to unbounded domains, then, after the usual modification of the integrand in the Moser functional, the statement of the Concentration-Compactnes Principle is very similar to the statement in the case of a bounded domain. In particular, in the case of a nontrivial weak limit the borderline exponent is still given by the formula \[ P:=(1-\Vert \Phi (|\nabla u|)\Vert \_\{L^1(\mathbb \{R\}^n)\})^\{-\{1\}/\{(n-1)\}\}. \]},
author = {Černý, Robert},
journal = {Czechoslovak Mathematical Journal},
keywords = {Sobolev space; Orlicz-Sobolev space; Moser-Trudinger inequality; sharp constant; concentration-compactness principle},
language = {eng},
number = {2},
pages = {493-516},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Concentration-Compactness Principle for embedding into multiple exponential spaces on unbounded domains},
url = {http://eudml.org/doc/270126},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Černý, Robert
TI - Concentration-Compactness Principle for embedding into multiple exponential spaces on unbounded domains
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 2
SP - 493
EP - 516
AB - Let $\Omega \subset \mathbb {R}^n$ be a domain and let $\alpha <n-1$. We prove the Concentration-Compactness Principle for the embedding of the space $W_0^1L^n\log ^{\alpha }L(\Omega )$ into an Orlicz space corresponding to a Young function which behaves like $\exp (t^{{n}/{(n-1-\alpha )}})$ for large $t$. We also give the result for the embedding into multiple exponential spaces. Our main result is Theorem where we show that if one passes to unbounded domains, then, after the usual modification of the integrand in the Moser functional, the statement of the Concentration-Compactnes Principle is very similar to the statement in the case of a bounded domain. In particular, in the case of a nontrivial weak limit the borderline exponent is still given by the formula \[ P:=(1-\Vert \Phi (|\nabla u|)\Vert _{L^1(\mathbb {R}^n)})^{-{1}/{(n-1)}}. \]
LA - eng
KW - Sobolev space; Orlicz-Sobolev space; Moser-Trudinger inequality; sharp constant; concentration-compactness principle
UR - http://eudml.org/doc/270126
ER -
References
top- Adachi, S., Tanaka, K., 10.1090/S0002-9939-99-05180-1, Proc. Am. Math. Soc. 128 2051-2057 (2000). (2000) MR1646323DOI10.1090/S0002-9939-99-05180-1
- Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the -Laplacian, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 17 393-413 (1990). (1990) Zbl0732.35028MR1079983
- Battaglia, L., Mancini, G., Remarks on the Moser-Trudinger inequality, Adv. Nonlinear Anal. 2 389-425 (2013). (2013) Zbl1290.46025MR3199739
- Carleson, L., Chang, S.-Y. A., On the existence of an extremal function for an inequality of J. Moser, Bull. Sci. Math., II. Sér. 110 113-127 (1986), French summary. (1986) MR0878016
- Černý, R., Concentration-compactness principle for embedding into multiple exponential spaces, Math. Inequal. Appl. 15 165-198 (2012). (2012) Zbl1236.46027MR2919441
- Černý, R., 10.1007/s00030-011-0143-0, NoDEA, Nonlinear Differ. Equ. Appl. 19 575-608 (2012). (2012) Zbl1262.46025MR2984597DOI10.1007/s00030-011-0143-0
- Černý, R., 10.2478/s11533-011-0102-3, Cent. Eur. J. Math. 10 590-602 (2012). (2012) Zbl1272.46019MR2893423DOI10.2478/s11533-011-0102-3
- Černý, R., Cianchi, A., Hencl, S., 10.1007/s10231-011-0220-3, Ann. Mat. Pura Appl. (4) 192 225-243 (2013). (2013) MR3035137DOI10.1007/s10231-011-0220-3
- Černý, R., Gurka, P., Hencl, S., 10.4171/ZAA/1439, Z. Anal. Anwend. 30 355-375 (2011). (2011) Zbl1225.46026MR2819500DOI10.4171/ZAA/1439
- Černý, R., Gurka, P., Hencl, S., 10.1016/j.na.2011.05.015, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 5189-5204 (2011). (2011) Zbl1225.35062MR2810699DOI10.1016/j.na.2011.05.015
- Černý, R., Mašková, S., 10.1007/s10587-010-0048-9, Czech. Math. J. 60 751-782 (2010). (2010) Zbl1224.46064MR2672414DOI10.1007/s10587-010-0048-9
- Chabrowski, J., 10.1007/BF01187898, Calc. Var. Partial Differ. Equ. 3 493-512 (1995). (1995) Zbl0838.35035MR1385297DOI10.1007/BF01187898
- Cianchi, A., 10.1512/iumj.1996.45.1958, Indiana Univ. Math. J. 45 39-65 (1996). (1996) Zbl0860.46022MR1406683DOI10.1512/iumj.1996.45.1958
- Figueiredo, D. G. de, Miyagaki, O. H., Ruf, B., 10.1007/BF01205003, Calc. Var. Partial Differ. Equ. 3 139-153 (1995). (1995) MR1386960DOI10.1007/BF01205003
- 'O, J. M. do, 10.1155/S1085337597000419, Abstr. Appl. Anal. 2 301-315 (1997). (1997) MR1704875DOI10.1155/S1085337597000419
- Ó, J. M. do, Souza, M. de, Medeiros, E. de, Severo, U., 10.1016/j.jde.2013.10.016, J. Differ. Equations 256 1317-1349 (2014). (2014) MR3145759DOI10.1016/j.jde.2013.10.016
- Ó, J. M. do, Medeiros, E., Severo, U., 10.1016/j.jde.2008.11.020, J. Differ. Equations 246 1363-1386 (2009). (2009) MR2488689DOI10.1016/j.jde.2008.11.020
- Edmunds, D. E., Gurka, P., Opic, B., 10.1090/S0002-9939-98-04327-5, Proc. Am. Math. Soc. 126 2417-2425 (1998). (1998) Zbl0895.46020MR1451796DOI10.1090/S0002-9939-98-04327-5
- Edmunds, D. E., Gurka, P., Opic, B., 10.1006/jfan.1996.3037, J. Funct. Anal. 146 116-150 (1997). (1997) Zbl0934.46036MR1446377DOI10.1006/jfan.1996.3037
- Edmunds, D. E., Gurka, P., Opic, B., 10.1017/S0308210500023210, Proc. R. Soc. Edinb., Sect. A 126 995-1009 (1996). (1996) Zbl0860.46024MR1415818DOI10.1017/S0308210500023210
- Edmunds, D. E., Gurka, P., Opic, B., Double exponential integrability, Bessel potentials and embedding theorems, Stud. Math. 115 151-181 (1995). (1995) Zbl0829.47024MR1347439
- Edmunds, D. E., Gurka, P., Opic, B., 10.1512/iumj.1995.44.1977, Indiana Univ. Math. J. 44 19-43 (1995). (1995) Zbl0826.47021MR1336431DOI10.1512/iumj.1995.44.1977
- Edmunds, D. E., Krbec, M., Two limiting cases of Sobolev imbeddings, Houston J. Math. 21 119-128 (1995). (1995) Zbl0835.46027MR1331250
- Fusco, N., Lions, P.-L., Sbordone, C., 10.1090/S0002-9939-96-03136-X, Proc. Am. Math. Soc. 124 561-565 (1996). (1996) Zbl0841.46023MR1301025DOI10.1090/S0002-9939-96-03136-X
- Hencl, S., 10.1016/S0022-1236(02)00172-6, J. Funct. Anal. 204 (2003), 196-227. (2003) Zbl1034.46031MR2004749DOI10.1016/S0022-1236(02)00172-6
- Li, Y., Ruf, B., 10.1512/iumj.2008.57.3137, Indiana Univ. Math. J. 57 451-480 (2008). (2008) MR2400264DOI10.1512/iumj.2008.57.3137
- Lions, P.-L., 10.4171/RMI/6, Rev. Mat. Iberoam. 1 (1985), 145-201. (1985) Zbl0704.49005MR0834360DOI10.4171/RMI/6
- Moser, J., 10.1512/iumj.1971.20.20101, Indiana Univ. Math. J. 20 1077-1092 (1971). (1971) Zbl0213.13001MR0301504DOI10.1512/iumj.1971.20.20101
- Opic, B., Pick, L., On generalized Lorentz-Zygmund spaces, Math. Inequal. Appl. 2 391-467 (1999). (1999) Zbl0956.46020MR1698383
- Rao, M. M., Ren, Z. D., Theory of Orlicz Spaces, Pure and Applied Mathematics 146 Marcel Dekker, New York (1991). (1991) Zbl0724.46032MR1113700
- Ruf, B., 10.1016/j.jfa.2004.06.013, J. Funct. Anal. 219 340-367 (2005). (2005) MR2109256DOI10.1016/j.jfa.2004.06.013
- Talenti, G., Inequalities in rearrangement invariant function spaces, Nonlinear Analysis, Function Spaces and Applications. Vol. 5 M. Krbec et al. Proc. Conf., Praha, 1994. Prometheus Publishing House Praha (1994), 177-230. (1994) Zbl0872.46020MR1322313
- Trudinger, N. S., On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 473-484 (1967). (1967) Zbl0163.36402MR0216286
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.