Displaying similar documents to “Binary operations in classical and quantum mechanics”

Quantum B-algebras

Wolfgang Rump (2013)

Open Mathematics

Similarity:

The concept of quantale was created in 1984 to develop a framework for non-commutative spaces and quantum mechanics with a view toward non-commutative logic. The logic of quantales and its algebraic semantics manifests itself in a class of partially ordered algebras with a pair of implicational operations recently introduced as quantum B-algebras. Implicational algebras like pseudo-effect algebras, generalized BL- or MV-algebras, partially ordered groups, pseudo-BCK algebras, residuated...

When is a quantum space not a group?

Piotr Mikołaj Sołtan (2010)

Banach Center Publications

Similarity:

We give a survey of techniques from quantum group theory which can be used to show that some quantum spaces (objects of the category dual to the category of C*-algebras) do not admit any quantum group structure. We also provide a number of examples which include some very well known quantum spaces. Our tools include several purely quantum group theoretical results as well as study of existence of characters and traces on C*-algebras describing the considered quantum spaces as well as...

Contractible quantum Arens-Michael algebras

Nina V. Volosova (2010)

Banach Center Publications

Similarity:

We consider quantum analogues of locally convex spaces in terms of the non-coordinate approach. We introduce the notions of a quantum Arens-Michael algebra and a quantum polynormed module, and also quantum versions of projectivity and contractibility. We prove that a quantum Arens-Michael algebra is contractible if and only if it is completely isomorphic to a Cartesian product of full matrix C*-algebras. Similar results in the framework of traditional (non-quantum) approach are established,...

An introduction to quantum annealing

Diego de Falco, Dario Tamascelli (2011)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Similarity:

Quantum annealing, or quantum stochastic optimization, is a classical randomized algorithm which provides good heuristics for the solution of hard optimization problems. The algorithm, suggested by the behaviour of quantum systems, is an example of proficuous cross contamination between classical and quantum computer science. In this survey paper we illustrate how hard combinatorial problems are tackled by quantum computation and present some examples of the heuristics provided by quantum...

Natural quantum operational semantics with predicates

Marek Sawerwain, Roman Gielerak (2008)

International Journal of Applied Mathematics and Computer Science

Similarity:

A general definition of a quantum predicate and quantum labelled transition systems for finite quantum computation systems is presented. The notion of a quantum predicate as a positive operator-valued measure is developed. The main results of this paper are a theorem about the existence of generalised predicates for quantum programs defined as completely positive maps and a theorem about the existence of a GSOS format for quantum labelled transition systems. The first theorem is a slight...

A noncommutative 2-sphere generated by the quantum complex plane

Ismael Cohen, Elmar Wagner (2012)

Banach Center Publications

Similarity:

S. L. Woronowicz's theory of C*-algebras generated by unbounded elements is applied to q-normal operators satisfying the defining relation of the quantum complex plane. The unique non-degenerate C*-algebra of bounded operators generated by a q-normal operator is computed and an abstract description is given by using crossed product algebras. If the spectrum of the modulus of the q-normal operator is the positive half line, this C*-algebra will be considered as the algebra of continuous...

An introduction to quantum annealing

Diego de Falco, Dario Tamascelli (2011)

RAIRO - Theoretical Informatics and Applications

Similarity:

Quantum annealing, or quantum stochastic optimization, is a classical randomized algorithm which provides good heuristics for the solution of hard optimization problems. The algorithm, suggested by the behaviour of quantum systems, is an example of proficuous cross contamination between classical and quantum computer science. In this survey paper we illustrate how hard combinatorial problems are tackled by quantum computation and present some examples of the heuristics provided by quantum...