The variety of topological groups generated by the free topological group on [0,1]
Sidney A. Morris (1976)
Colloquium Mathematicae
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Sidney A. Morris (1976)
Colloquium Mathematicae
Similarity:
Sidney A. Morris (1972)
Matematický časopis
Similarity:
Vladimir Pestov, Dmitri Shakhmatov (1998)
Colloquium Mathematicae
Similarity:
Answering a 1982 question of Sidney A. Morris, we construct a topological group G and a subspace X such that (i) G is algebraically free over X, (ii) G is relatively free over X, that is, every continuous mapping from X to G extends to a unique continuous endomorphism of G, and (iii) G is not a varietal free topological group on X in any variety of topological groups.
Stanisław Balcerzyk, Jan Mycielski (1957)
Fundamenta Mathematicae
Similarity:
Edward T. Ordman (1974)
Colloquium Mathematicae
Similarity:
Edward T. Ordman (1974)
Colloquium Mathematicae
Similarity:
Hans-E. Porst (1988)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Nurettin Bağırmaz, İlhan İçen, Abdullah F. Özcan (2016)
Topological Algebra and its Applications
Similarity:
The concept of topological group is a simple combination of the concepts of abstract group and topological space. The purpose of this paper is to combine the concepts of topological space and rough groups; called topological rough groups on an approximation space.
Hans-E. Porst (1987)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Joe Flood
Similarity:
CONTENTSPreface.................................................................................................5Chapter 0. Preliminaries and notation..................................................6PART I. Free topological vector spaces - Introduction..........................9Chapter 1. Universal arrows...............................................................10Chapter 2. Free locally convex topological vector spaces..................12Chapter 3. Free normed spaces........................................................23Chapter...
G. J. Michaelides (1975)
Colloquium Mathematicae
Similarity:
J. Anusiak, K. P. Shum (1971)
Colloquium Mathematicae
Similarity: