The variety of topological groups generated by the free topological group on [0,1]
Sidney A. Morris (1976)
Colloquium Mathematicae
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Sidney A. Morris (1976)
Colloquium Mathematicae
Similarity:
Sidney A. Morris (1972)
Matematický časopis
Similarity:
Vladimir Pestov, Dmitri Shakhmatov (1998)
Colloquium Mathematicae
Similarity:
Answering a 1982 question of Sidney A. Morris, we construct a topological group G and a subspace X such that (i) G is algebraically free over X, (ii) G is relatively free over X, that is, every continuous mapping from X to G extends to a unique continuous endomorphism of G, and (iii) G is not a varietal free topological group on X in any variety of topological groups.
Stanisław Balcerzyk, Jan Mycielski (1957)
Fundamenta Mathematicae
Similarity:
Edward T. Ordman (1974)
Colloquium Mathematicae
Similarity:
Edward T. Ordman (1974)
Colloquium Mathematicae
Similarity:
Hans-E. Porst (1988)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Nurettin Bağırmaz, İlhan İçen, Abdullah F. Özcan (2016)
Topological Algebra and its Applications
Similarity:
The concept of topological group is a simple combination of the concepts of abstract group and topological space. The purpose of this paper is to combine the concepts of topological space and rough groups; called topological rough groups on an approximation space.
Hans-E. Porst (1987)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Joe Flood
Similarity:
CONTENTSPreface.................................................................................................5Chapter 0. Preliminaries and notation..................................................6PART I. Free topological vector spaces - Introduction..........................9Chapter 1. Universal arrows...............................................................10Chapter 2. Free locally convex topological vector spaces..................12Chapter 3. Free normed spaces........................................................23Chapter...
G. J. Michaelides (1975)
Colloquium Mathematicae
Similarity:
J. Anusiak, K. P. Shum (1971)
Colloquium Mathematicae
Similarity: