The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Non-additivity of the fixed point property for tree-like continua”

Characterizing chainable, tree-like, and circle-like continua

Taras Banakh, Zdzisław Kosztołowicz, Sławomir Turek (2011)

Colloquium Mathematicae

Similarity:

We prove that a continuum X is tree-like (resp. circle-like, chainable) if and only if for each open cover 𝓤₄ = {U₁,U₂,U₃,U₄} of X there is a 𝓤₄-map f: X → Y onto a tree (resp. onto the circle, onto the interval). A continuum X is an acyclic curve if and only if for each open cover 𝓤₃ = {U₁,U₂,U₃} of X there is a 𝓤₃-map f: X → Y onto a tree (or the interval [0,1]).

♣-like principles under CH

Winfried Just (2001)

Fundamenta Mathematicae

Similarity:

Some relatives of the Juhász Club Principle are introduced and studied in the presence of CH. In particular, it is shown that a slight strengthening of this principle implies the existence of a Suslin tree in the presence of CH.

Exactly two-to-one maps from continua onto some tree-like continua

Wojciech Dębski, J. Heath, J. Mioduszewski (1992)

Fundamenta Mathematicae

Similarity:

It is known that no dendrite (Gottschalk 1947) and no hereditarily indecomposable tree-like continuum (J. Heath 1991) can be the image of a continuum under an exactly 2-to-1 (continuous) map. This paper enlarges the class of tree-like continua satisfying this property, namely to include those tree-like continua whose nondegenerate proper subcontinua are arcs. This includes all Knaster continua and Ingram continua. The conjecture that all tree-like continua have this property, stated...