Displaying similar documents to “Link bordism skein modules”

On constructions of generalized skein modules

Uwe Kaiser (2014)

Banach Center Publications

Similarity:

Józef Przytycki introduced skein modules of 3-manifolds and skein deformation initiating algebraic topology based on knots. We discuss the generalized skein modules of Walker, defined by fields and local relations. Some results by Przytycki are proven in a more general setting of fields defined by decorated cell-complexes in manifolds. A construction of skein theory from embedded TQFT-functors is given, and the corresponding background is developed. The possible coloring of fields by...

Limits of tilting modules

Clezio A. Braga, Flávio U. Coelho (2009)

Colloquium Mathematicae

Similarity:

We study the problem of when a direct limit of tilting modules is still a tilting module.

Some remarks on Prüfer modules

S. Ebrahimi Atani, S. Dolati Pishhesari, M. Khoramdel (2013)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

We provide several characterizations and investigate properties of Prüfer modules. In fact, we study the connections of such modules with their endomorphism rings. We also prove that for any Prüfer module M, the forcing linearity number of M, fln(M), belongs to {0,1}.

Rigidity of generalized Verma modules

Oleksandr Khomenko, Volodymyr Mazorchuk (2002)

Colloquium Mathematicae

Similarity:

We prove that generalized Verma modules induced from generic Gelfand-Zetlin modules, and generalized Verma modules associated with Enright-complete modules, are rigid. Their Loewy lengths and quotients of the unique Loewy filtrations are calculated for the regular block of the corresponding category 𝒪(𝔭,Λ).

The classification of partially symmetric 3-braid links

Alexander Stoimenov (2015)

Open Mathematics

Similarity:

We classify 3-braid links which are amphicheiral as unoriented links, including a new proof of Birman- Menasco’s result for the (orientedly) amphicheiral 3-braid links. Then we classify the partially invertible 3-braid links.