Displaying similar documents to “Hopf algebras and dendriform structures arising from parking functions”

Cobraided smash product Hom-Hopf algebras

Tianshui Ma, Haiying Li, Tao Yang (2014)

Colloquium Mathematicae

Similarity:

Let (A,α) and (B,β) be two Hom-Hopf algebras. We construct a new class of Hom-Hopf algebras: R-smash products ( A R B , α β ) . Moreover, necessary and sufficient conditions for ( A R B , α β ) to be a cobraided Hom-Hopf algebra are given.

Classifying bicrossed products of two Sweedler's Hopf algebras

Costel-Gabriel Bontea (2014)

Czechoslovak Mathematical Journal

Similarity:

We continue the study started recently by Agore, Bontea and Militaru in “Classifying bicrossed products of Hopf algebras” (2014), by describing and classifying all Hopf algebras E that factorize through two Sweedler’s Hopf algebras. Equivalently, we classify all bicrossed products H 4 H 4 . There are three steps in our approach. First, we explicitly describe the set of all matched pairs ( H 4 , H 4 , , ) by proving that, with the exception of the trivial pair, this set is parameterized by the ground field...

Quasitriangular Hom-Hopf algebras

Yuanyuan Chen, Zhongwei Wang, Liangyun Zhang (2014)

Colloquium Mathematicae

Similarity:

A twisted generalization of quasitriangular Hopf algebras called quasitriangular Hom-Hopf algebras is introduced. We characterize these algebras in terms of certain morphisms. We also give their equivalent description via a braided monoidal category ̃ ( H ) . Finally, we study the twisting structure of quasitriangular Hom-Hopf algebras by conjugation with Hom-2-cocycles.

Symmetries in connected graded algebras and their PBW-deformations

Yongjun Xu, Xin Zhang (2023)

Czechoslovak Mathematical Journal

Similarity:

We focus on connected graded algebras and their PBW-deformations endowed with additional symmetric structures. Many well-known algebras such as negative parts of Drinfeld-Jimbo’s quantum groups, cubic Artin-Schelter algebras and three-dimensional Sklyanin algebras appear in our research framework. As an application, we investigate a 𝒦 2 algebra 𝒜 which was introduced to compute the cohomology ring of the Fomin-Kirillov algebra ℱ𝒦 3 , and explicitly construct all the (self-)symmetric and sign-(self-)symmetric...

Isomorphisms between graded Frobenius algebras constructed from twisted superpotentials

Xuejun Xia, Libin Li (2022)

Czechoslovak Mathematical Journal

Similarity:

In order to distinguish the connected graded Frobenius algebras determined by different twisted superpotentials, we introduce the nondegeneracy of twisted superpotentials. We give the sufficient and necessary condition for connected graded Frobenius algebras determined by two nondegenerate twisted superpotentials to be isomorphic. As an application, we classify the connected -graded Frobenius algebra of length 3, whose dimension of the degree 1 is 2.

On a Construction of ModularGMS-algebras

Abd El-Mohsen Badawy (2015)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

In this paper we investigate the class of all modular GMS-algebras which contains the class of MS-algebras. We construct modular GMS-algebras from the variety 𝐊 ̲ 2 by means of K ̲ 2 -quadruples. We also characterize isomorphisms of these algebras by means of K ̲ 2 -quadruples.

Division algebras that generalize Dickson semifields

Daniel Thompson (2020)

Communications in Mathematics

Similarity:

We generalize Knuth’s construction of Case I semifields quadratic over a weak nucleus, also known as generalized Dickson semifields, by doubling of central simple algebras. We thus obtain division algebras of dimension 2 s 2 by doubling central division algebras of degree s . Results on isomorphisms and automorphisms of these algebras are obtained in certain cases.

Schwartz kernel theorem in algebras of generalized functions

Vincent Valmorin (2010)

Banach Center Publications

Similarity:

A new approach to the generalization of Schwartz’s kernel theorem to Colombeau algebras of generalized functions is given. It is based on linear maps from algebras of classical functions to algebras of generalized ones. In particular, this approach enables one to give a meaning to certain hypotheses in preceding similar work on this theorem. Results based on the properties of G -generalized functions class are given. A straightforward relationship between the classical and the generalized...

Generalized Post algebras and their application to some infinitary many-valued logics

Cat-Ho Nguyen

Similarity:

CONTENTSIntroduction............................................................................................................................................................................... 5Part I. A generalization of Post algebras............................................................................................................................. 7   1. Definition and characterization of generalized Post algebras............................................. 7   2. Post...

A geometric approach to full Colombeau algebras

R. Steinbauer (2010)

Banach Center Publications

Similarity:

We present a geometric approach to diffeomorphism invariant full Colombeau algebras which allows a particularly clear view of the construction of the intrinsically defined algebra ^ ( M ) on the manifold M given in [gksv].

Koszul duality for N-Koszul algebras

Roberto Martínez-Villa, Manuel Saorín (2005)

Colloquium Mathematicae

Similarity:

The correspondence between the category of modules over a graded algebra and the category of graded modules over its Yoneda algebra was studied in [8] by means of A algebras; this relation is very well understood for Koszul algebras (see for example [5],[6]). It is of interest to look for cases such that there exists a duality generalizing the Koszul situation. In this paper we will study N-Koszul algebras [1], [7], [9] for which such a duality exists.