The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Remainders of metrizable and close to metrizable spaces”

A note on topological groups and their remainders

Liang-Xue Peng, Yu-Feng He (2012)

Czechoslovak Mathematical Journal

Similarity:

In this note we first give a summary that on property of a remainder of a non-locally compact topological group G in a compactification b G makes the remainder and the topological group G all separable and metrizable. If a non-locally compact topological group G has a compactification b G such that the remainder b G G of G belongs to 𝒫 , then G and b G G are separable and metrizable, where 𝒫 is a class of spaces which satisfies the following conditions: (1) if X 𝒫 , then every compact subset of the...

Addition theorems and D -spaces

Aleksander V. Arhangel'skii, Raushan Z. Buzyakova (2002)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

It is proved that if a regular space X is the union of a finite family of metrizable subspaces then X is a D -space in the sense of E. van Douwen. It follows that if a regular space X of countable extent is the union of a finite collection of metrizable subspaces then X is Lindelöf. The proofs are based on a principal result of this paper: every space with a point-countable base is a D -space. Some other new results on the properties of spaces which are unions of a finite collection of...

A generalization of Čech-complete spaces and Lindelöf Σ -spaces

Aleksander V. Arhangel'skii (2013)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The class of s -spaces is studied in detail. It includes, in particular, all Čech-complete spaces, Lindelöf p -spaces, metrizable spaces with the weight 2 ω , but countable non-metrizable spaces and some metrizable spaces are not in it. It is shown that s -spaces are in a duality with Lindelöf Σ -spaces: X is an s -space if and only if some (every) remainder of X in a compactification is a Lindelöf Σ -space [Arhangel’skii A.V., Remainders of metrizable and close to metrizable spaces, Fund. Math....

On spaces with point-countable k -systems

Iwao Yoshioka (2004)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

This paper deals with the behavior of M -spaces, countably bi-quasi- k -spaces and singly bi-quasi- k -spaces with point-countable k -systems. For example, we show that every M -space with a point-countable k -system is locally compact paracompact, and every separable singly bi-quasi- k -space with a point-countable k -system has a countable k -system. Also, we consider equivalent relations among spaces entried in Table 1 in Michael’s paper [15] when the spaces have point-countable k -systems. ...