Displaying similar documents to “A Lagrangian representation of tangles II”

A reverse engineering approach to the Weil representation

Anne-Marie Aubert, Tomasz Przebinda (2014)

Open Mathematics

Similarity:

We describe a new approach to the Weil representation attached to a symplectic group over a finite or a local field. We dissect the representation into small pieces, study how they work, and put them back together. This way, we obtain a reversed construction of that of T. Thomas, skipping most of the literature on which the latter is based.

The determinant of oriented rotants

Adam H. Piwocki (2007)

Colloquium Mathematicae

Similarity:

We study the determinant of pairs of rotants of Anstee, Przytycki and Rolfsen. We consider various notions of rotant orientations.

Definable Davies' theorem

Asger Törnquist, William Weiss (2009)

Fundamenta Mathematicae

Similarity:

We prove the following descriptive set-theoretic analogue of a theorem of R. O. Davies: Every Σ¹₂ function f:ℝ × ℝ → ℝ can be represented as a sum of rectangular Σ¹₂ functions if and only if all reals are constructible.

On the representation systems with respect to summation methods

K. S. Kazarian (2006)

Banach Center Publications

Similarity:

Properties of representation systems with respect to summation methods are studied. For a given representation system with respect to a given summation method we study, in particular, the question of the stability of that property after deleting finitely many elements. As a consequence we obtain the existence of null series for the systems with respect to a given method of summation.

Divisibility of twisted Alexander polynomials and fibered knots

Teruaki Kitano, Takayuki Morifuji (2005)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We prove that Wada’s twisted Alexander polynomial of a knot group associated to any nonabelian S L ( 2 , 𝔽 ) -representation is a polynomial. As a corollary, we show that it is always a monic polynomial of degree 4 g - 2 for a fibered knot of genus  g .