Displaying similar documents to “A fixed point theorem for branched covering maps of the plane”

On uncountable collections of continua and their span

Dušan Repovš, Arkadij Skopenkov, Evgenij Ščepin (1996)

Colloquium Mathematicae

Similarity:

We prove that if the Euclidean plane 2 contains an uncountable collection of pairwise disjoint copies of a tree-like continuum X, then the symmetric span of X is zero, sX = 0. We also construct a modification of the Oversteegen-Tymchatyn example: for each ε > 0 there exists a tree X 2 such that σX < ε but X cannot be covered by any 1-chain. These are partial solutions of some well-known problems in continua theory.

Non-separating subcontinua of planar continua

D. Daniel, C. Islas, R. Leonel, E. D. Tymchatyn (2015)

Colloquium Mathematicae

Similarity:

We revisit an old question of Knaster by demonstrating that each non-degenerate plane hereditarily unicoherent continuum X contains a proper, non-degenerate subcontinuum which does not separate X.

A fixed-point anomaly in the plane

Charles L. Hagopian, Janusz R. Prajs (2005)

Fundamenta Mathematicae

Similarity:

We define an unusual continuum M with the fixed-point property in the plane ℝ². There is a disk D in ℝ² such that M ∩ D is an arc and M ∪ D does not have the fixed-point property. This example answers a question of R. H. Bing. The continuum M is a countable union of arcs.