Displaying similar documents to “Range of a contractive strongly positive projection in a C*-algebra”

Absolutely strongly star-Hurewicz spaces

Yan-Kui Song (2015)

Open Mathematics

Similarity:

A space X is absolutely strongly star-Hurewicz if for each sequence (Un :n ∈ℕ/ of open covers of X and each dense subset D of X, there exists a sequence (Fn :n ∈ℕ/ of finite subsets of D such that for each x ∈X, x ∈St(Fn; Un) for all but finitely many n. In this paper, we investigate the relationships between absolutely strongly star-Hurewicz spaces and related spaces, and also study topological properties of absolutely strongly star-Hurewicz spaces.

Remarks on strongly star-Menger spaces

Yan-Kui Song (2013)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A space X is strongly star-Menger if for each sequence ( 𝒰 n : n ) of open covers of X , there exists a sequence ( K n : n N ) of finite subsets of X such that { S t ( K n , 𝒰 n ) : n } is an open cover of X . In this paper, we investigate the relationship between strongly star-Menger spaces and related spaces, and also study topological properties of strongly star-Menger spaces.

Strongly proximinal subspaces of finite codimension in C(K)

S. Dutta, Darapaneni Narayana (2007)

Colloquium Mathematicae

Similarity:

We characterize strongly proximinal subspaces of finite codimension in C(K) spaces. We give two applications of our results. First, we show that the metric projection on a strongly proximinal subspace of finite codimension in C(K) is Hausdorff metric continuous. Second, strong proximinality is a transitive relation for finite-codimensional subspaces of C(K).