Displaying similar documents to “Orbit algebras and periodicity”

On nonstandard tame selfinjective algebras having only periodic modules

Jerzy Białkowski, Thorsten Holm, Andrzej Skowroński (2003)

Colloquium Mathematicae

Similarity:

We investigate degenerations and derived equivalences of tame selfinjective algebras having no simply connected Galois coverings but the stable Auslander-Reiten quiver consisting only of tubes, discovered recently in [4].

On selfinjective algebras of tilted type

Andrzej Skowroński, Kunio Yamagata (2015)

Colloquium Mathematicae

Similarity:

We provide a characterization of all finite-dimensional selfinjective algebras over a field K which are socle equivalent to a prominent class of selfinjective algebras of tilted type.

The periodicity conjecture for blocks of group algebras

Karin Erdmann, Andrzej Skowroński (2015)

Colloquium Mathematicae

Similarity:

We describe the representation-infinite blocks B of the group algebras KG of finite groups G over algebraically closed fields K for which all simple modules are periodic with respect to the action of the syzygy operators. In particular, we prove that all such blocks B are periodic algebras of period 4. This confirms the periodicity conjecture for blocks of group algebras.

On domestic algebras of semiregular type

Alicja Jaworska-Pastuszak, Andrzej Skowroński (2013)

Colloquium Mathematicae

Similarity:

We describe the structure of finite-dimensional algebras of domestic representation type over an algebraically closed field whose Auslander-Reiten quiver consists of generalized standard and semiregular components. Moreover, we prove that this class of algebras contains all special biserial algebras whose Auslander-Reiten quiver consists of semiregular components.

Left sections and the left part of an artin algebra

Ibrahim Assem (2009)

Colloquium Mathematicae

Similarity:

We define a notion of left section in an Auslander-Reiten component, by weakening one of the axioms for sections. We derive a generalisation of the Liu-Skowroński criterion for tilted algebras, then apply our results to describe the Auslander-Reiten components lying in the left part of an artin algebra.

On Auslander-Reiten translates in functorially finite subcategories and applications

K. Erdmann, D. Madsen, V. Miemietz (2010)

Colloquium Mathematicae

Similarity:

We consider functorially finite subcategories in module categories over Artin algebras. One main result provides a method, in the setup of bounded derived categories, to compute approximations and the end terms of relative Auslander-Reiten sequences. We also prove an Auslander-Reiten formula for the setting of functorially finite subcategories. Furthermore, we study the category of modules filtered by standard modules for certain quasi-hereditary algebras and we classify precisely when...

Euclidean components for a class of self-injective algebras

Sarah Scherotzke (2009)

Colloquium Mathematicae

Similarity:

We determine the length of composition series of projective modules of G-transitive algebras with an Auslander-Reiten component of Euclidean tree class. We thereby correct and generalize a result of Farnsteiner [Math. Nachr. 202 (1999)]. Furthermore we show that modules with certain length of composition series are periodic. We apply these results to G-transitive blocks of the universal enveloping algebras of restricted p-Lie algebras and prove that G-transitive principal blocks only...

On restrictions of indecomposables of tame algebras

R. Bautista, E. Pérez, L. Salmerón (2011)

Colloquium Mathematicae

Similarity:

We continue the study of ditalgebras, an acronym for "differential tensor algebras", and of their categories of modules. We examine extension/restriction interactions between module categories over a ditalgebra and a proper subditalgebra. As an application, we prove a result on representations of finite-dimensional tame algebras Λ over an algebraically closed field, which gives information on the extension/restriction interaction between module categories of some special algebras Λ₀,...

Selfinjective algebras of euclidean type with almost regular nonperiodic Auslander-Reiten components

Grzegorz Bobiński, Andrzej Skowroński (2001)

Colloquium Mathematicae

Similarity:

We give a complete description of finite-dimensional selfinjective algebras of Euclidean tilted type over an algebraically closed field whose all nonperiodic Auslander-Reiten components are almost regular. In particular, we describe the tame selfinjective finite-dimensional algebras whose all nonperiodic Auslander-Reiten components are almost regular and generalized standard.

Symmetric special biserial algebras of euclidean type

Rafał Bocian, Andrzej Skowroński (2003)

Colloquium Mathematicae

Similarity:

We classify (up to Morita equivalence) all symmetric special biserial algebras of Euclidean type, by algebras arising from Brauer graphs.

Cycle-finite algebras of semiregular type

Jerzy Białkowski, Andrzej Skowroński, Adam Skowyrski, Paweł Wiśniewski (2012)

Colloquium Mathematicae

Similarity:

We describe the structure of artin algebras for which all cycles of indecomposable finitely generated modules are finite and all Auslander-Reiten components are semiregular.

Selfinjective algebras of strictly canonical type

Marta Kwiecień, Andrzej Skowroński (2009)

Colloquium Mathematicae

Similarity:

We develop the representation theory of selfinjective algebras of strictly canonical type and prove that their Auslander-Reiten quivers admit quasi-tubes maximally saturated by simple and projective modules.

Tame triangular matrix algebras

Zbigniew Leszczyński, Andrzej Skowroński (2000)

Colloquium Mathematicae

Similarity:

We describe all finite-dimensional algebras A over an algebraically closed field for which the algebra T 2 ( A ) of 2×2 upper triangular matrices over A is of tame representation type. Moreover, the algebras A for which T 2 ( A ) is of polynomial growth (respectively, domestic, of finite representation type) are also characterized.

A characterization of representation-finite biserial algebras over a perfect field

Zygmunt Pogorzały

Similarity:

CONTENTS1. Introduction.........................................................................................51. The structure of distributive biserial algebras.....................................72. Almost multiplicity-free modules........................................................153. One point extension..........................................................................194. Representation-finite biserial algebras with the (S)-condition...........315. Representation-finite...

The representation dimension of domestic weakly symmetric algebras

Rafał Bocian, Thorsten Holm, Andrzej Skowroński (2004)

Open Mathematics

Similarity:

Auslander’s representation dimension measures how far a finite dimensional algebra is away from being of finite representation type. In [1], M. Auslander proved that a finite dimensional algebra A is of finite representation type if and only if the representation dimension of A is at most 2. Recently, R. Rouquier proved that there are finite dimensional algebras of an arbitrarily large finite representation dimension. One of the exciting open problems is to show that all finite dimensional...