The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Poisson kernels of drifted Laplace operators on trees and on the half-plane”

Feynman-Kac formula, λ-Poisson kernels and λ-Green functions of half-spaces and balls in hyperbolic spaces

Tomasz Byczkowski, Jacek Małecki, Tomasz Żak (2010)

Colloquium Mathematicae

Similarity:

We apply the Feynman-Kac formula to compute the λ-Poisson kernels and λ-Green functions for half-spaces or balls in hyperbolic spaces. We present known results in a unified way and also provide new formulas for the λ-Poisson kernels and λ-Green functions of half-spaces in ℍⁿ and for balls in real and complex hyperbolic spaces.

Computation of Biharmonic Poisson Kernel for the Upper Half Plane

Ali Abkar (2007)

Bollettino dell'Unione Matematica Italiana

Similarity:

We first consider the biharmonic Poisson kernel for the unit disk, and study the boundary behavior of potentials associated to this kernel function. We shall then use some properties of the biharmonic Poisson kernel for the unit disk to compute the analogous biharmonic Poisson kernel for the upper half plane.

Poisson transforms for differential forms

Christoph Harrach (2016)

Archivum Mathematicum

Similarity:

We give a construction of a Poisson transform mapping density valued differential forms on generalized flag manifolds to differential forms on the corresponding Riemannian symmetric spaces, which can be described entirely in terms of finite dimensional representations of reductive Lie groups. Moreover, we will explicitly generate a family of degree-preserving Poisson transforms whose restriction to real valued differential forms has coclosed images. In addition, as a transform on sections...

The Markovian hyperbolic triangulation

Nicolas Curien, Wendelin Werner (2013)

Journal of the European Mathematical Society

Similarity:

We construct and study the unique random tiling of the hyperbolic plane into ideal hyperbolic triangles (with the three corners located on the boundary) that is invariant (in law) with respect to Möbius transformations, and possesses a natural spatial Markov property that can be roughly described as the conditional independence of the two parts of the triangulation on the two sides of the edge of one of its triangles.