Displaying similar documents to “n-functionality of graphs”

n-Functional digraphs uniquely determined by the skeleton

Konrad Pióro (2002)

Colloquium Mathematicae

Similarity:

We show that any total n-functional digraph D is uniquely determined by its skeleton up to the orientation of some cycles and infinite chains. Next, we characterize all graphs G such that each n-functional digraph obtained from G by directing all its edges is total. Finally, we describe finite graphs whose edges can be directed to form a total n-functional digraph without cycles.

Products Of Digraphs And Their Competition Graphs

Martin Sonntag, Hanns-Martin Teichert (2016)

Discussiones Mathematicae Graph Theory

Similarity:

If D = (V, A) is a digraph, its competition graph (with loops) CGl(D) has the vertex set V and {u, v} ⊆ V is an edge of CGl(D) if and only if there is a vertex w ∈ V such that (u, w), (v, w) ∈ A. In CGl(D), loops {v} are allowed only if v is the only predecessor of a certain vertex w ∈ V. For several products D1 ⚬ D2 of digraphs D1 and D2, we investigate the relations between the competition graphs of the factors D1, D2 and the competition graph of their product D1 ⚬ D2.

Isomorphisms and traversability of directed path graphs

Hajo Broersma, Xueliang Li (2002)

Discussiones Mathematicae Graph Theory

Similarity:

The concept of a line digraph is generalized to that of a directed path graph. The directed path graph Pₖ(D) of a digraph D is obtained by representing the directed paths on k vertices of D by vertices. Two vertices are joined by an arc whenever the corresponding directed paths in D form a directed path on k+1 vertices or form a directed cycle on k vertices in D. In this introductory paper several properties of P₃(D) are studied, in particular with respect to isomorphism and traversability....

On graphs all of whose {C₃,T₃}-free arc colorations are kernel-perfect

Hortensia Galeana-Sánchez, José de Jesús García-Ruvalcaba (2001)

Discussiones Mathematicae Graph Theory

Similarity:

A digraph D is called a kernel-perfect digraph or KP-digraph when every induced subdigraph of D has a kernel. We call the digraph D an m-coloured digraph if the arcs of D are coloured with m distinct colours. A path P is monochromatic in D if all of its arcs are coloured alike in D. The closure of D, denoted by ζ(D), is the m-coloured digraph defined as follows: V( ζ(D)) = V(D), and A( ζ(D)) = ∪_{i} {(u,v) with colour i: there exists a monochromatic...