Displaying similar documents to “On the Diophantine equation x ² + 2 α 13 β = y

The Diophantine equation ( b n ) x + ( 2 n ) y = ( ( b + 2 ) n ) z

Min Tang, Quan-Hui Yang (2013)

Colloquium Mathematicae

Similarity:

Recently, Miyazaki and Togbé proved that for any fixed odd integer b ≥ 5 with b ≠ 89, the Diophantine equation b x + 2 y = ( b + 2 ) z has only the solution (x,y,z) = (1,1,1). We give an extension of this result.

On X 1 4 + 4 X 2 4 = X 3 8 + 4 X 4 8 and Y 1 4 = Y 2 4 + Y 3 4 + 4 Y 4 4

Susil Kumar Jena (2015)

Communications in Mathematics

Similarity:

The two related Diophantine equations: X 1 4 + 4 X 2 4 = X 3 8 + 4 X 4 8 and Y 1 4 = Y 2 4 + Y 3 4 + 4 Y 4 4 , have infinitely many nontrivial, primitive integral solutions. We give two parametric solutions, one for each of these equations.

Further remarks on Diophantine quintuples

Mihai Cipu (2015)

Acta Arithmetica

Similarity:

A set of m positive integers with the property that the product of any two of them is the predecessor of a perfect square is called a Diophantine m-tuple. Much work has been done attempting to prove that there exist no Diophantine quintuples. In this paper we give stringent conditions that should be met by a putative Diophantine quintuple. Among others, we show that any Diophantine quintuple a,b,c,d,e with a < b < c < d < e s a t i s f i e s d < 1.55·1072 a n d b < 6.21·1035 w h e n 4 a < b , w h i l e f o r b < 4 a o n e h a s e i t h e r c = a + b + 2√(ab+1)...

A note on the exponential Diophantine equation ( 4 m ² + 1 ) x + ( 5 m ² - 1 ) y = ( 3 m ) z

Jianping Wang, Tingting Wang, Wenpeng Zhang (2015)

Colloquium Mathematicae

Similarity:

Let m be a positive integer. Using an upper bound for the solutions of generalized Ramanujan-Nagell equations given by Y. Bugeaud and T. N. Shorey, we prove that if 3 ∤ m, then the equation ( 4 m ² + 1 ) x + ( 5 m ² - 1 ) y = ( 3 m ) z has only the positive integer solution (x,y,z) = (1,1,2).

On the Lebesgue-Nagell equation

Andrzej Dąbrowski (2011)

Colloquium Mathematicae

Similarity:

We completely solve the Diophantine equations x ² + 2 a q b = y (for q = 17, 29, 41). We also determine all C = p a p k a k and C = 2 a p a p k a k , where p , . . . , p k are fixed primes satisfying certain conditions. The corresponding Diophantine equations x² + C = yⁿ may be studied by the method used by Abu Muriefah et al. (2008) and Luca and Togbé (2009).

Multiplicative relations on binary recurrences

Florian Luca, Volker Ziegler (2013)

Acta Arithmetica

Similarity:

Given a binary recurrence u n n 0 , we consider the Diophantine equation u n 1 x 1 u n L x L = 1 with nonnegative integer unknowns n 1 , . . . , n L , where n i n j for 1 ≤ i < j ≤ L, m a x | x i | : 1 i L K , and K is a fixed parameter. We show that the above equation has only finitely many solutions and the largest one can be explicitly bounded. We demonstrate the strength of our method by completely solving a particular Diophantine equation of the above form.