Primitive prime divisors in polynomial arithmetic dynamics.
Rice, Brian (2007)
Integers
Similarity:
Rice, Brian (2007)
Integers
Similarity:
Robert Juricevic (2009)
Acta Arithmetica
Similarity:
Andrew Granville (2012)
Acta Arithmetica
Similarity:
Alain Togbé, Bo He (2008)
Acta Arithmetica
Similarity:
Zhigang Li, Jianye Xia, Pingzhi Yuan (2007)
Acta Arithmetica
Similarity:
Lindström, B. (1999)
Portugaliae Mathematica
Similarity:
Lawrence Somer (2004)
Mathematica Slovaca
Similarity:
Michal Křížek, Lawrence Somer (2001)
Mathematica Bohemica
Similarity:
We examine primitive roots modulo the Fermat number . We show that an odd integer is a Fermat prime if and only if the set of primitive roots modulo is equal to the set of quadratic non-residues modulo . This result is extended to primitive roots modulo twice a Fermat number.
Andrzej Rotkiewicz (2002)
Acta Mathematica et Informatica Universitatis Ostraviensis
Similarity: