Displaying similar documents to “On continuity at zero of the maximal operator for a semifinite measure”

The Picard-Lindelöf Theorem and continuation of solutions for measure differential equations

Gastón Beltritti, Stefania Demaria, Graciela Giubergia, Fernando Mazzone (2025)

Czechoslovak Mathematical Journal

Similarity:

We obtain, by means of Banach's Fixed Point Theorem, convergence for the Picard iterations associated to a general nonlinear system of measure differential equations. We study the existence of left-continuous solutions defined on maximal intervals and we establish some properties of these maximal solutions.

A Note on the Measure of Solvability

D. Caponetti, G. Trombetta (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let X be an infinite-dimensional Banach space. The measure of solvability ν(I) of the identity operator I is equal to 1.

Product Pre-Measure

Noboru Endou (2016)

Formalized Mathematics

Similarity:

In this article we formalize in Mizar [5] product pre-measure on product sets of measurable sets. Although there are some approaches to construct product measure [22], [6], [9], [21], [25], we start it from σ-measure because existence of σ-measure on any semialgebras has been proved in [15]. In this approach, we use some theorems for integrals.

Fubini’s Theorem on Measure

Noboru Endou (2017)

Formalized Mathematics

Similarity:

The purpose of this article is to show Fubini’s theorem on measure [16], [4], [7], [15], [18]. Some theorems have the possibility of slight generalization, but we have priority to avoid the complexity of the description. First of all, for the product measure constructed in [14], we show some theorems. Then we introduce the section which plays an important role in Fubini’s theorem, and prove the relevant proposition. Finally we show Fubini’s theorem on measure.

On the generalized Avez method

Antoni Leon Dawidowicz (1992)

Annales Polonici Mathematici

Similarity:

A generalization of the Avez method of construction of an invariant measure is presented.

Construction of Measure from Semialgebra of Sets1

Noboru Endou (2015)

Formalized Mathematics

Similarity:

In our previous article [22], we showed complete additivity as a condition for extension of a measure. However, this condition premised the existence of a σ-field and the measure on it. In general, the existence of the measure on σ-field is not obvious. On the other hand, the proof of existence of a measure on a semialgebra is easier than in the case of a σ-field. Therefore, in this article we define a measure (pre-measure) on a semialgebra and extend it to a measure on a σ-field. Furthermore,...