The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “An analogue of Hardy's theorem for the Heisenberg group”

Hardy spaces associated with some Schrödinger operators

Jacek Dziubański, Jacek Zienkiewicz (1997)

Studia Mathematica

Similarity:

For a Schrödinger operator A = -Δ + V, where V is a nonnegative polynomial, we define a Hardy H A 1 space associated with A. An atomic characterization of H A 1 is shown.

Multiplier operators on product spaces

Hung Viet Le (2002)

Studia Mathematica

Similarity:

The author proves the boundedness for a class of multiplier operators on product spaces. This extends a result obtained by Lung-Kee Chen in 1994.

Hardy Inequality in Variable Exponent Lebesgue Spaces

Diening, Lars, Samko, Stefan (2007)

Fractional Calculus and Applied Analysis

Similarity:

Mathematics Subject Classification: 26D10, 46E30, 47B38 We prove the Hardy inequality and a similar inequality for the dual Hardy operator for variable exponent Lebesgue spaces.

Hardy space H associated to Schrödinger operator with potential satisfying reverse Hölder inequality.

Jacek Dziubanski, Jacek Zienkiewicz (1999)

Revista Matemática Iberoamericana

Similarity:

Let {T} be the semigroup of linear operators generated by a Schrödinger operator -A = Δ - V, where V is a nonnegative potential that belongs to a certain reverse Hölder class. We define a Hardy space H by means of a maximal function associated with the semigroup {T}. Atomic and Riesz transforms characterizations of H are shown.

Multipliers for Hermite expansions.

Sundaram Thangavelu (1987)

Revista Matemática Iberoamericana

Similarity:

The aim of this paper is to prove certain multiplier theorems for the Hermite series.