Displaying similar documents to “Conjugacy for Fourier-Bessel expansions”

Existence of solutions to the Poisson equation in L p -weighted spaces

Joanna Rencławowicz, Wojciech M. Zajączkowski (2010)

Applicationes Mathematicae

Similarity:

We examine the Poisson equation with boundary conditions on a cylinder in a weighted space of L p , p≥ 3, type. The weight is a positive power of the distance from a distinguished plane. To prove the existence of solutions we use our result on existence in a weighted L₂ space.

S'-convolvability with the Poisson kernel in the Euclidean case and the product domain case

Josefina Alvarez, Martha Guzmán-Partida, Urszula Skórnik (2003)

Studia Mathematica

Similarity:

We obtain real-variable and complex-variable formulas for the integral of an integrable distribution in the n-dimensional case. These formulas involve specific versions of the Cauchy kernel and the Poisson kernel, namely, the Euclidean version and the product domain version. We interpret the real-variable formulas as integrals of S’-convolutions. We characterize those tempered distribution that are S’-convolvable with the Poisson kernel in the Euclidean case and the product domain case....

Absolute convergence of multiple Fourier integrals

Yurii Kolomoitsev, Elijah Liflyand (2013)

Studia Mathematica

Similarity:

Various new sufficient conditions for representation of a function of several variables as an absolutely convergent Fourier integral are obtained. The results are given in terms of L p integrability of the function and its partial derivatives, each with a different p. These p are subject to certain relations known earlier only for some particular cases. Sharpness and applications of the results obtained are also discussed.

Cauchy-Poisson transform and polynomial inequalities

Mirosław Baran (2009)

Annales Polonici Mathematici

Similarity:

We apply the Cauchy-Poisson transform to prove some multivariate polynomial inequalities. In particular, we show that if the pluricomplex Green function of a fat compact set E in N is Hölder continuous then E admits a Szegö type inequality with weight function d i s t ( x , E ) - ( 1 - κ ) with a positive κ. This can be viewed as a (nontrivial) generalization of the classical result for the interval E = [-1,1] ⊂ ℝ.

Mean field limit for the one dimensional Vlasov-Poisson equation

Maxime Hauray (2012-2013)

Séminaire Laurent Schwartz — EDP et applications

Similarity:

We consider systems of N particles in dimension one, driven by pair Coulombian or gravitational interactions. When the number of particles goes to infinity in the so called mean field scaling, we formally expect convergence towards the Vlasov-Poisson equation. Actually a rigorous proof of that convergence was given by Trocheris in [Tro86]. Here we shall give a simpler proof of this result, and explain why it implies the so-called “Propagation of molecular chaos”. More precisely, both...

Weighted bounds for variational Fourier series

Yen Do, Michael Lacey (2012)

Studia Mathematica

Similarity:

For 1 < p < ∞ and for weight w in A p , we show that the r-variation of the Fourier sums of any function f in L p ( w ) is finite a.e. for r larger than a finite constant depending on w and p. The fact that the variation exponent depends on w is necessary. This strengthens previous work of Hunt-Young and is a weighted extension of a variational Carleson theorem of Oberlin-Seeger-Tao-Thiele-Wright. The proof uses weighted adaptation of phase plane analysis and a weighted extension of a variational...

Mapping properties of fundamental operators in harmonic analysis related to Bessel operators

Jorge J. Betancor, Eleonor Harboure, Adam Nowak, Beatriz Viviani (2010)

Studia Mathematica

Similarity:

We obtain sharp power-weighted L p , weak type and restricted weak type inequalities for the heat and Poisson integral maximal operators, Riesz transform and a Littlewood-Paley type square function, emerging naturally in the harmonic analysis related to Bessel operators.

The Dixmier-Moeglin equivalence and a Gel’fand-Kirillov problem for Poisson polynomial algebras

K. R. Goodearl, S. Launois (2011)

Bulletin de la Société Mathématique de France

Similarity:

The structure of Poisson polynomial algebras of the type obtained as semiclassical limits of quantized coordinate rings is investigated. Sufficient conditions for a rational Poisson action of a torus on such an algebra to leave only finitely many Poisson prime ideals invariant are obtained. Combined with previous work of the first-named author, this establishes the Poisson Dixmier-Moeglin equivalence for large classes of Poisson polynomial rings, including semiclassical limits of quantum...

Weighted inequalities for rough square functions through extrapolation

Javier Duoandikoetxea, Edurne Seijo (2002)

Studia Mathematica

Similarity:

Weighted inequalities for some square functions are studied. L² results are proved first using the particular structure of the operator and then extrapolation of weights is applied to extend the results to other L p spaces. In particular, previous results for square functions with rough kernel are obtained in a simpler way and extended to a larger class of weights.

On the global regularity of subcritical Euler–Poisson equations with pressure

Eitan Tadmor, Dongming Wei (2008)

Journal of the European Mathematical Society

Similarity:

We prove that the one-dimensional Euler–Poisson system driven by the Poisson forcing together with the usual γ -law pressure, γ 1 , admits global solutions for a large class of initial data. Thus, the Poisson forcing regularizes the generic finite-time breakdown in the 2 × 2 p -system. Global regularity is shown to depend on whether or not the initial configuration of the Riemann invariants and density crosses an intrinsic critical threshold.

Kontsevich Deformation Quantization on Lie Algebras

Nabiha Ben Amar, Mouna Chaabouni, Mabrouka Hfaiedh (2007)

Bollettino dell'Unione Matematica Italiana

Similarity:

We consider Kontsevich star product on the dual 𝔤 * of a general Lie algebra g equipped with the linear Poisson bracket. We show that this star product provides a deformation quantization by partial embeddings in the direction of the Poisson bracket.

On the diametral dimension of weighted spaces of analytic germs

Michael Langenbruch (2016)

Studia Mathematica

Similarity:

We prove precise estimates for the diametral dimension of certain weighted spaces of germs of holomorphic functions defined on strips near ℝ. This implies a full isomorphic classification for these spaces including the Gelfand-Shilov spaces S ¹ α and S α for α > 0. Moreover we show that the classical spaces of Fourier hyperfunctions and of modified Fourier hyperfunctions are not isomorphic.

A note on discriminating Poisson processes from other point processes with stationary inter arrival times

Gusztáv Morvai, Benjamin Weiss (2019)

Kybernetika

Similarity:

We give a universal discrimination procedure for determining if a sample point drawn from an ergodic and stationary simple point process on the line with finite intensity comes from a homogeneous Poisson process with an unknown parameter. Presented with the sample on the interval [ 0 , t ] the discrimination procedure g t , which is a function of the finite subsets of [ 0 , t ] , will almost surely eventually stabilize on either POISSON or NOTPOISSON with the first alternative occurring if and only if the...

Properties on subclass of Sakaguchi type functions using a Mittag-Leffler type Poisson distribution series

Elumalai Krishnan Nithiyanandham, Bhaskara Srutha Keerthi (2024)

Mathematica Bohemica

Similarity:

Few subclasses of Sakaguchi type functions are introduced in this article, based on the notion of Mittag-Leffler type Poisson distribution series. The class 𝔭 - Φ 𝒮 * ( t , μ , ν , J , K ) is defined, and the necessary and sufficient condition, convex combination, growth distortion bounds, and partial sums are discussed.

Generalized Hörmander conditions and weighted endpoint estimates

María Lorente, José María Martell, Carlos Pérez, María Silvina Riveros (2009)

Studia Mathematica

Similarity:

We consider two-weight estimates for singular integral operators and their commutators with bounded mean oscillation functions. Hörmander type conditions in the scale of Orlicz spaces are assumed on the kernels. We prove weighted weak-type estimates for pairs of weights (u,Su) where u is an arbitrary nonnegative function and S is a maximal operator depending on the smoothness of the kernel. We also obtain sufficient conditions on a pair of weights (u,v) for the operators to be bounded...

A variation norm Carleson theorem

Richard Oberlin, Andreas Seeger, Terence Tao, Christoph Thiele, James Wright (2012)

Journal of the European Mathematical Society

Similarity:

We strengthen the Carleson-Hunt theorem by proving L p estimates for the r -variation of the partial sum operators for Fourier series and integrals, for r > 𝚖𝚊𝚡 { p ' , 2 } . Four appendices are concerned with transference, a variation norm Menshov-Paley-Zygmund theorem, and applications to nonlinear Fourier transforms and ergodic theory.

Poisson geometry of directed networks in an annulus

Michael Gekhtman, Michael Shapiro, Vainshtein, Alek (2012)

Journal of the European Mathematical Society

Similarity:

As a generalization of Postnikov’s construction [P], we define a map from the space of edge weights of a directed network in an annulus into a space of loops in the Grassmannian. We then show that universal Poisson brackets introduced for the space of edge weights in [GSV3] induce a family of Poisson structures on rational matrix-valued functions and on the space of loops in the Grassmannian. In the former case, this family includes, for a particular kind of networks, the Poisson bracket...

Two-weighted criteria for integral transforms with multiple kernels

Vakhtang Kokilashvili, Alexander Meskhi (2006)

Banach Center Publications

Similarity:

Necessary and sufficient conditions governing two-weight L p norm estimates for multiple Hardy and potential operators are presented. Two-weight inequalities for potentials defined on nonhomogeneous spaces are also discussed. Sketches of the proofs for most of the results are given.

A note on n-ary Poisson brackets

Michor, Peter W., Vaisman, Izu

Similarity:

An n -ary Poisson bracket (or generalized Poisson bracket) on the manifold M is a skew-symmetric n -linear bracket { , , } of functions which is a derivation in each argument and satisfies the generalized Jacobi identity of order n , i.e., σ S 2 n - 1 ( sign σ ) { { f σ 1 , , f σ n } , f σ n + 1 , , f σ 2 n - 1 } = 0 , S 2 n - 1 being the symmetric group. The notion of generalized Poisson bracket was introduced by et al. in [J. Phys. A, Math. Gen. 29, No. 7, L151–L157 (1996; Zbl 0912.53019) and J. Phys. A, Math. Gen. 30, No. 18, L607–L616 (1997; Zbl 0932.37056)]....

Convergence a.e. of spherical partial Fourier integrals on weighted spaces for radial functions: endpoint estimates

María J. Carro, Elena Prestini (2009)

Studia Mathematica

Similarity:

We prove some extrapolation results for operators bounded on radial L p functions with p ∈ (p₀,p₁) and deduce some endpoint estimates. We apply our results to prove the almost everywhere convergence of the spherical partial Fourier integrals and to obtain estimates on maximal Bochner-Riesz type operators acting on radial functions in several weighted spaces.