Covering Property Axiom and its consequences
Krzysztof Ciesielski, Janusz Pawlikowski (2003)
Fundamenta Mathematicae
Similarity:
We formulate a Covering Property Axiom , which holds in the iterated perfect set model, and show that it implies easily the following facts. (a) For every S ⊂ ℝ of cardinality continuum there exists a uniformly continuous function g: ℝ → ℝ with g[S] = [0,1]. (b) If S ⊂ ℝ is either perfectly meager or universally null then S has cardinality less than . (c) cof() = ω₁ < , i.e., the cofinality of the measure ideal is ω₁. (d) For every uniformly bounded sequence of Borel functions...