Displaying similar documents to “Continuous version of the Choquet integral representation theorem”

Convex Corson compacta and Radon measures

Grzegorz Plebanek (2002)

Fundamenta Mathematicae

Similarity:

Assuming the continuum hypothesis, we show that (i) there is a compact convex subset L of Σ ( ω ) , and a probability Radon measure on L which has no separable support; (ii) there is a Corson compact space K, and a convex weak*-compact set M of Radon probability measures on K which has no G δ -points.

Continuous linear functionals on the space of Borel vector measures

Pola Siwek (2008)

Annales Polonici Mathematici

Similarity:

We study properties of the space ℳ of Borel vector measures on a compact metric space X, taking values in a Banach space E. The space ℳ is equipped with the Fortet-Mourier norm | | · | | and the semivariation norm ||·||(X). The integral introduced by K. Baron and A. Lasota plays the most important role in the paper. Investigating its properties one can prove that in most cases the space ( , | | · | | ) * is contained in but not equal to the space (ℳ,||·||(X))*. We obtain a representation of the continuous functionals...

Borel classes of uniformizations of sets with large sections

Petr Holický (2010)

Fundamenta Mathematicae

Similarity:

We give several refinements of known theorems on Borel uniformizations of sets with “large sections”. In particular, we show that a set B ⊂ [0,1] × [0,1] which belongs to Σ α , α ≥ 2, and which has all “vertical” sections of positive Lebesgue measure, has a Π α uniformization which is the graph of a Σ α -measurable mapping. We get a similar result for sets with nonmeager sections. As a corollary we derive an improvement of Srivastava’s theorem on uniformizations for Borel sets with G δ sections. ...

Minimax theorems without changeless proportion

Liang-Ju Chu, Chi-Nan Tsai (2003)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

The so-called minimax theorem means that if X and Y are two sets, and f and g are two real-valued functions defined on X×Y, then under some conditions the following inequality holds: i n f y Y s u p x X f ( x , y ) s u p x X i n f y Y g ( x , y ) . We will extend the two functions version of minimax theorems without the usual condition: f ≤ g. We replace it by a milder condition: s u p x X f ( x , y ) s u p x X g ( x , y ) , ∀y ∈ Y. However, we require some restrictions; such as, the functions f and g are jointly upward, and their upper sets are connected. On the other hand, by using some...

On Beurling measure algebras

Ross Stokke (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We show how the measure theory of regular compacted-Borel measures defined on the δ -ring of compacted-Borel subsets of a weighted locally compact group ( G , ω ) provides a compatible framework for defining the corresponding Beurling measure algebra ( G , ω ) , thus filling a gap in the literature.

Čech-Stone-like compactifications for general topological spaces

Miroslav Hušek (1992)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The problem whether every topological space X has a compactification Y such that every continuous mapping f from X into a compact space Z has a continuous extension from Y into Z is answered in the negative. For some spaces X such compactifications exist.

Convex integration with constraints and applications to phase transitions and partial differential equations

Stefan Müller, Vladimír Šverák (1999)

Journal of the European Mathematical Society

Similarity:

We study solutions of first order partial differential relations D u K , where u : Ω n m is a Lipschitz map and K is a bounded set in m × n matrices, and extend Gromov’s theory of convex integration in two ways. First, we allow for additional constraints on the minors of D u and second we replace Gromov’s P −convex hull by the (functional) rank-one convex hull. The latter can be much larger than the former and this has important consequences for the existence of ‘wild’ solutions to elliptic systems. Our...

On some ergodic properties for continuous and affine functions

Charles J. K. Batty (1978)

Annales de l'institut Fourier

Similarity:

Two problems posed by Choquet and Foias are solved: (i) Let T be a positive linear operator on the space C ( X ) of continuous real-valued functions on a compact Hausdorff space X . It is shown that if n - 1 r = 0 n - 1 T r 1 converges pointwise to a continuous limit, then the convergence is uniform on X . (ii) An example is given of a Choquet simplex K and a positive linear operator T on the space A ( K ) of continuous affine real-valued functions on K , such that inf { ( T n 1 ) ( x ) : n } < 1 for each...

Denseness and Borel complexity of some sets of vector measures

Zbigniew Lipecki (2004)

Studia Mathematica

Similarity:

Let ν be a positive measure on a σ-algebra Σ of subsets of some set and let X be a Banach space. Denote by ca(Σ,X) the Banach space of X-valued measures on Σ, equipped with the uniform norm, and by ca(Σ,ν,X) its closed subspace consisting of those measures which vanish at every ν-null set. We are concerned with the subsets ν ( X ) and ν ( X ) of ca(Σ,X) defined by the conditions |φ| = ν and |φ| ≥ ν, respectively, where |φ| stands for the variation of φ ∈ ca(Σ,X). We establish necessary and sufficient...

F σ -mappings and the invariance of absolute Borel classes

Petr Holický, Jiří Spurný (2004)

Fundamenta Mathematicae

Similarity:

It is proved that F σ -mappings preserve absolute Borel classes, which improves results of R. W. Hansell, J. E. Jayne and C. A. Rogers. The proof is based on the fact that any F σ -mapping f: X → Y of an absolute Suslin metric space X onto an absolute Suslin metric space Y becomes a piecewise perfect mapping when restricted to a suitable F σ -set X X satisfying f ( X ) = Y .

Some characterization of locally nonconical convex sets

Witold Seredyński (2004)

Czechoslovak Mathematical Journal

Similarity:

A closed convex set Q in a local convex topological Hausdorff spaces X is called locally nonconical (LNC) if for every x , y Q there exists an open neighbourhood U of x such that ( U Q ) + 1 2 ( y - x ) Q . A set Q is local cylindric (LC) if for x , y Q , x y , z ( x , y ) there exists an open neighbourhood U of z such that U Q (equivalently: b d ( Q ) U ) is a union of open segments parallel to [ x , y ] . In this paper we prove that these two notions are equivalent. The properties LNC and LC were investigated in [3], where the implication L N C L C was proved in...

Minimal multi-convex projections

Grzegorz Lewicki, Michael Prophet (2007)

Studia Mathematica

Similarity:

We say that a function from X = C L [ 0 , 1 ] is k-convex (for k ≤ L) if its kth derivative is nonnegative. Let P denote a projection from X onto V = Πₙ ⊂ X, where Πₙ denotes the space of algebraic polynomials of degree less than or equal to n. If we want P to leave invariant the cone of k-convex functions (k ≤ n), we find that such a demand is impossible to fulfill for nearly every k. Indeed, only for k = n-1 and k = n does such a projection exist. So let us consider instead a more general “shape”...

On inhomogeneous self-similar measures and their L q spectra

Przemysław Liszka (2013)

Annales Polonici Mathematici

Similarity:

Let S i : d d for i = 1,..., N be contracting similarities, let ( p , . . . , p N , p ) be a probability vector and let ν be a probability measure on d with compact support. It is well known that there exists a unique inhomogeneous self-similar probability measure μ on d such that μ = i = 1 N p i μ S i - 1 + p ν . We give satisfactory estimates for the lower and upper bounds of the L q spectra of inhomogeneous self-similar measures. The case in which there are a countable number of contracting similarities and probabilities is considered. In particular,...