The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The Banach-Saks property in rearrangement invariant spaces”

On Simons' version of Hahn-Banach-Lagrange theorem

Jerzy Grzybowski, Hubert Przybycień, Ryszard Urbański (2014)

Banach Center Publications

Similarity:

In this paper we generalize in Theorem 12 some version of Hahn-Banach Theorem which was obtained by Simons. We also present short proofs of Mazur and Mazur-Orlicz Theorem (Theorems 2 and 3).

Banach-Saks property in some Banach sequence spaces

Yunan Cui, Henryk Hudzik, Ryszard Płuciennik (1997)

Annales Polonici Mathematici

Similarity:

It is proved that for any Banach space X property (β) defined by Rolewicz in [22] implies that both X and X* have the Banach-Saks property. Moreover, in Musielak-Orlicz sequence spaces, criteria for the Banach-Saks property, the near uniform convexity, the uniform Kadec-Klee property and property (H) are given.

Rademacher series from Orlicz to the present day

N. J. Kalton (2004)

Banach Center Publications

Similarity:

We survey some questions on Rademacher series in both Banach and quasi-Banach spaces which have been the subject of extensive research from the time of Orlicz to the present day.

The Hahn-Banach Theorem surveyed

Gerard Buskes

Similarity:

CONTENTS1. Prerequisites....................................................................................52. The history.......................................................................................63. Helly's Part.......................................................................................64. Banach's proof.................................................................................75. The shortest proof...........................................................................86....