Displaying similar documents to “Ergodic theorems and perturbations of contraction semigroups”

A semigroup analogue of the Fonf-Lin-Wojtaszczyk ergodic characterization of reflexive Banach spaces with a basis

Delio Mugnolo (2004)

Studia Mathematica

Similarity:

In analogy to a recent result by V. Fonf, M. Lin, and P. Wojtaszczyk, we prove the following characterizations of a Banach space X with a basis. (i) X is finite-dimensional if and only if every bounded, uniformly continuous, mean ergodic semigroup on X is uniformly mean ergodic. (ii) X is reflexive if and only if every bounded strongly continuous semigroup is mean ergodic if and only if every bounded uniformly continuous semigroup on X is mean ergodic. ...

Hypercyclic, topologically mixing and chaotic semigroups on Banach spaces

Teresa Bermúdez, Antonio Bonilla, José A. Conejero, Alfredo Peris (2005)

Studia Mathematica

Similarity:

Our aim in this paper is to prove that every separable infinite-dimensional complex Banach space admits a topologically mixing holomorphic uniformly continuous semigroup and to characterize the mixing property for semigroups of operators. A concrete characterization of being topologically mixing for the translation semigroup on weighted spaces of functions is also given. Moreover, we prove that there exists a commutative algebra of operators containing both a chaotic operator and an...

A note on convergence of semigroups

Adam Bobrowski (1998)

Annales Polonici Mathematici

Similarity:

Convergence of semigroups which do not converge in the Trotter-Kato-Neveu sense is considered.

On a class of Markov type semigroups in spaces of uniformly continuous and bounded functions

Enrico Priola (1999)

Studia Mathematica

Similarity:

We study a new class of Markov type semigroups (not strongly continuous in general) in the space of all real, uniformly continuous and bounded functions on a separable metric space E. Our results allow us to characterize the generators of Markov transition semigroups in infinite dimensions such as the heat and the Ornstein-Uhlenbeck semigroups.