Displaying similar documents to “A reaction-diffusion equation on a net-shaped thin domain”

Critical points for reaction-diffusion system with one and two unilateral conditions

Jan Eisner, Jan Žilavý (2023)

Archivum Mathematicum

Similarity:

We show the location of so called critical points, i.e., couples of diffusion coefficients for which a non-trivial solution of a linear reaction-diffusion system of activator-inhibitor type on an interval with Neumann boundary conditions and with additional non-linear unilateral condition at one or two points on the boundary and/or in the interior exists. Simultaneously, we show the profile of such solutions.

Behaviour of global solutions for a system of reaction-diffusion equations from combustion theory

Salah Badraoui (1999)

Applicationes Mathematicae

Similarity:

We are concerned with the boundedness and large time behaviour of the solution for a system of reaction-diffusion equations modelling complex consecutive reactions on a bounded domain under homogeneous Neumann boundary conditions. Using the techniques of E. Conway, D. Hoff and J. Smoller [3] we also show that the bounded solution converges to a constant function as t → ∞. Finally, we investigate the rate of this convergence.

Diffusion and cross-diffusion in pattern formation

Wei-Ming Ni (2004)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

We discuss the stability and instability properties of steady state solutions to single equations, shadow systems, as well as 2 × 2 systems. Our basic observation is that the more complicated the pattern are, the more unstable they tend to be.

N -widths for singularly perturbed problems

Martin Stynes, R. Bruce Kellogg (2002)

Mathematica Bohemica

Similarity:

Kolmogorov N -widths are an approximation theory concept that, for a given problem, yields information about the optimal rate of convergence attainable by any numerical method applied to that problem. We survey sharp bounds recently obtained for the N -widths of certain singularly perturbed convection-diffusion and reaction-diffusion boundary value problems.