On finitely equivalent continua.
Charatonik, Janusz J. (2003)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Charatonik, Janusz J. (2003)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Wojciech Dębski, J. Heath, J. Mioduszewski (1992)
Fundamenta Mathematicae
Similarity:
It is known that no dendrite (Gottschalk 1947) and no hereditarily indecomposable tree-like continuum (J. Heath 1991) can be the image of a continuum under an exactly 2-to-1 (continuous) map. This paper enlarges the class of tree-like continua satisfying this property, namely to include those tree-like continua whose nondegenerate proper subcontinua are arcs. This includes all Knaster continua and Ingram continua. The conjecture that all tree-like continua have this property, stated...
J. Krasinkiewicz (1974)
Fundamenta Mathematicae
Similarity:
H. Cook (1970)
Fundamenta Mathematicae
Similarity:
Acosta, Gerardo, Charatonik, Janusz J. (2004)
Mathematica Pannonica
Similarity:
H. Cook (1974)
Fundamenta Mathematicae
Similarity:
James Davis, W. Ingram (1988)
Fundamenta Mathematicae
Similarity:
W. Ingram (1972)
Fundamenta Mathematicae
Similarity:
Hisao Kato (1988)
Compositio Mathematica
Similarity:
C. Eberhart, J. Fugate (1971)
Fundamenta Mathematicae
Similarity:
S. Drobot (1971)
Applicationes Mathematicae
Similarity:
George W. Henderson (1971)
Colloquium Mathematicae
Similarity:
K. Kawamura, E. Tymchatyn (1996)
Colloquium Mathematicae
Similarity:
A symmetric, idempotent, continuous binary operation on a space is called a mean. In this paper, we provide a criterion for the non-existence of mean on a certain class of continua which includes tree-like continua. This generalizes a result of Bell and Watson. We also prove that any hereditarily indecomposable circle-like continuum admits no mean.