Displaying similar documents to “Weakly countably determined spaces of high complexity”

A new class of weakly countably determined Banach spaces

K. K. Kampoukos, S. K. Mercourakis (2010)

Fundamenta Mathematicae

Similarity:

A class of Banach spaces, countably determined in their weak topology (hence, WCD spaces) is defined and studied; we call them strongly weakly countably determined (SWCD) Banach spaces. The main results are the following: (i) A separable Banach space not containing ℓ¹(ℕ) is SWCD if and only if it has separable dual; thus in particular, not every separable Banach space is SWCD. (ii) If K is a compact space, then the space C(K) is SWCD if and only if K is countable.

Some properties of weak Banach-Saks operators

Othman Aboutafail, Larbi Zraoula, Noufissa Hafidi (2021)

Mathematica Bohemica

Similarity:

We establish necessary and sufficient conditions under which weak Banach-Saks operators are weakly compact (respectively, L-weakly compact; respectively, M-weakly compact). As consequences, we give some interesting characterizations of order continuous norm (respectively, reflexive Banach lattice).

M-weak and L-weak compactness of b-weakly compact operators

J. H'Michane, A. El Kaddouri, K. Bouras, M. Moussa (2013)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We characterize Banach lattices under which each b-weakly compact (resp. b-AM-compact, strong type (B)) operator is L-weakly compact (resp. M-weakly compact).

Some permanence results of properties of Banach spaces

Giovanni Emmanuele (2004)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Using some known lifting theorems we present three-space property type and permanence results; some of them seem to be new, whereas other are improvements of known facts.