Banach spaces of compact operators
Charles E. Cleaver (1972)
Colloquium Mathematicae
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Charles E. Cleaver (1972)
Colloquium Mathematicae
Similarity:
Francisco Javier García-Pacheco, Daniele Puglisi (2010)
Studia Mathematica
Similarity:
This article is divided into two parts. The first one is on the linear structure of the set of norm-attaining functionals on a Banach space. We prove that every Banach space that admits an infinite-dimensional separable quotient can be equivalently renormed so that the set of norm-attaining functionals contains an infinite-dimensional vector subspace. This partially solves a question proposed by Aron and Gurariy. The second part is on the linear structure of dominated operators. We show...
Iryna Banakh, Taras Banakh (2010)
Studia Mathematica
Similarity:
We prove that for each dense non-compact linear operator S: X → Y between Banach spaces there is a linear operator T: Y → c₀ such that the operator TS: X → c₀ is not compact. This generalizes the Josefson-Nissenzweig Theorem.
R. Dudley (1970)
Studia Mathematica
Similarity:
Akkouchi, Mohamed (2016-05-20T09:55:13Z)
Acta Universitatis Lodziensis. Folia Mathematica
Similarity:
Pradipta Bandyopadhyay, Bor-Luh Lin, T. S. S. R. K. Rao (2009)
Colloquium Mathematicae
Similarity:
We study Banach spaces X with subspaces Y whose unit ball is densely remotal in X. We show that for several classes of Banach spaces, the unit ball of the space of compact operators is densely remotal in the space of bounded operators. We also show that for several classical Banach spaces, the unit ball is densely remotal in the duals of higher even order. We show that for a separable remotal set E ⊆ X, the set of Bochner integrable functions with values in E is a remotal set in L¹(μ,X). ...
Vladimir M. Kadets, Roman V. Shvidkoy, Dirk Werner (2001)
Studia Mathematica
Similarity:
Let X be a Banach space. We introduce a formal approach which seems to be useful in the study of those properties of operators on X which depend only on the norms of the images of elements. This approach is applied to the Daugavet equation for norms of operators; in particular we develop a general theory of narrow operators and rich subspaces of spaces X with the Daugavet property previously studied in the context of the classical spaces C(K) and L₁(μ).
Joosep Lippus, Eve Oja (2007)
Studia Mathematica
Similarity:
Let X and Y be Banach spaces and let 𝓐(X,Y) be a closed subspace of 𝓛(X,Y), the Banach space of bounded linear operators from X to Y, containing the subspace 𝒦(X,Y) of compact operators. We prove that if Y has the metric compact approximation property and a certain geometric property M*(a,B,c), where a,c ≥ 0 and B is a compact set of scalars (Kalton's property (M*) = M*(1, {-1}, 1)), and if 𝓐(X,Y) ≠ 𝒦(X,Y), then there is no projection from 𝓐(X,Y) onto 𝒦(X,Y) with norm less than...
Luis Bernal-González (2017)
Open Mathematics
Similarity:
In this paper, a criterion for the existence of large linear algebras consisting, except for zero, of one-to-one operators on an infinite dimensional Banach space is provided. As a consequence, it is shown that every separable infinite dimensional Banach space supports a commutative infinitely generated free linear algebra of operators all of whose nonzero members are one-to-one. In certain cases, the assertion holds for nonseparable Banach spaces.
Jerry Johnson, John Wolfe (1979)
Studia Mathematica
Similarity:
Teresa Alvarez (1988)
Publicacions Matemàtiques
Similarity:
In this paper we show that a Rosenthal operator factors through a Banach space containing no isomorphs of l.
M. Kadec (1971)
Studia Mathematica
Similarity:
Joram Lindenstrauss (1975-1976)
Séminaire Choquet. Initiation à l'analyse
Similarity:
Åsvald Lima, Eve Oja (1999)
Studia Mathematica
Similarity:
We characterize the approximation property of Banach spaces and their dual spaces by the position of finite rank operators in the space of compact operators. In particular, we show that a Banach space E has the approximation property if and only if for all closed subspaces F of , the space ℱ(F,E) of finite rank operators from F to E has the n-intersection property in the corresponding space K(F,E) of compact operators for all n, or equivalently, ℱ(F,E) is an ideal in K(F,E). ...
Hatamleh, Raed (2007)
Serdica Mathematical Journal
Similarity:
2000 Mathematics Subject Classification: Primary 47A48, 93B28, 47A65; Secondary 34C94. New concepts of linear colligations and dynamic systems, corresponding to the linear operators, acting in the Banach spaces, are introduced. The main properties of the transfer function and its relation to the dual transfer function are established.
E. Martín Peinador, E. Induráin, A. Plans Sanz de Bremond, A. A. Rodes Usan (1988)
Revista Matemática de la Universidad Complutense de Madrid
Similarity:
The main result of this paper is the following: A separable Banach space X is reflexive if and only if the infimum of the Gelfand numbers of any bounded linear operator defined on X can be computed by means of just one sequence on nested, closed, finite codimensional subspaces with null intersection.
David E. Edmunds, Jan Lang (2013)
Studia Mathematica
Similarity:
We consider a compact linear map T acting between Banach spaces both of which are uniformly convex and uniformly smooth; it is supposed that T has trivial kernel and range dense in the target space. It is shown that if the Gelfand numbers of T decay sufficiently quickly, then the action of T is given by a series with calculable coefficients. This provides a Banach space version of the well-known Hilbert space result of E. Schmidt.
Stanislaw Kwapien (1972)
Mémoires de la Société Mathématique de France
Similarity: