Displaying similar documents to “Higher order local dimensions and Baire category”

Typical multifractal box dimensions of measures

L. Olsen (2011)

Fundamenta Mathematicae

Similarity:

We study the typical behaviour (in the sense of Baire’s category) of the multifractal box dimensions of measures on d . We prove that in many cases a typical measure μ is as irregular as possible, i.e. the lower multifractal box dimensions of μ attain the smallest possible value and the upper multifractal box dimensions of μ attain the largest possible value.

On the closure of Baire classes under transfinite convergences

Tamás Mátrai (2004)

Fundamenta Mathematicae

Similarity:

Let X be a Polish space and Y be a separable metric space. For a fixed ξ < ω₁, consider a family f α : X Y ( α < ω ) of Baire-ξ functions. Answering a question of Tomasz Natkaniec, we show that if for a function f: X → Y, the set α < ω : f α ( x ) f ( x ) is finite for every x ∈ X, then f itself is necessarily Baire-ξ. The proof is based on a characterization of Σ η sets which can be interesting in its own right.

Functions of Baire class one

Denny H. Leung, Wee-Kee Tang (2003)

Fundamenta Mathematicae

Similarity:

Let K be a compact metric space. A real-valued function on K is said to be of Baire class one (Baire-1) if it is the pointwise limit of a sequence of continuous functions. We study two well known ordinal indices of Baire-1 functions, the oscillation index β and the convergence index γ. It is shown that these two indices are fully compatible in the following sense: a Baire-1 function f satisfies β ( f ) ω ξ · ω ξ for some countable ordinals ξ₁ and ξ₂ if and only if there exists a sequence (fₙ) of Baire-1...

Extension of functions with small oscillation

Denny H. Leung, Wee-Kee Tang (2006)

Fundamenta Mathematicae

Similarity:

A classical theorem of Kuratowski says that every Baire one function on a G δ subspace of a Polish (= separable completely metrizable) space X can be extended to a Baire one function on X. Kechris and Louveau introduced a finer gradation of Baire one functions into small Baire classes. A Baire one function f is assigned into a class in this hierarchy depending on its oscillation index β(f). We prove a refinement of Kuratowski’s theorem: if Y is a subspace of a metric space X and f is a...

On Borel reducibility in generalized Baire space

Sy-David Friedman, Tapani Hyttinen, Vadim Kulikov (2015)

Fundamenta Mathematicae

Similarity:

We study the Borel reducibility of Borel equivalence relations on the generalized Baire space κ κ for an uncountable κ with κ < κ = κ . The theory looks quite different from its classical counterpart where κ = ω, although some basic theorems do generalize.

Rudin-like sets and hereditary families of compact sets

Étienne Matheron, Miroslav Zelený (2005)

Fundamenta Mathematicae

Similarity:

We show that a comeager Π₁¹ hereditary family of compact sets must have a dense G δ subfamily which is also hereditary. Using this, we prove an “abstract” result which implies the existence of independent ℳ ₀-sets, the meagerness of ₀-sets with the property of Baire, and generalizations of some classical results of Mycielski. Finally, we also give some natural examples of true F σ δ sets.

Invariance of the Gibbs measure for the Benjamin–Ono equation

Yu Deng (2015)

Journal of the European Mathematical Society

Similarity:

In this paper we consider the periodic Benjemin-Ono equation.We establish the invariance of the Gibbs measure associated to this equation, thus answering a question raised in Tzvetkov [28]. As an intermediate step, we also obtain a local well-posedness result in Besov-type spaces rougher than L 2 , extending the L 2 well-posedness result of Molinet [20].

Insertion of a Contra-Baire- 1 (Baire- . 5 ) Function

Majid Mirmiran (2019)

Communications in Mathematics

Similarity:

Necessary and sufficient conditions in terms of lower cut sets are given for the insertion of a Baire- . 5 function between two comparable real-valued functions on the topological spaces that F σ -kernel of sets are F σ -sets.

Characterization of local dimension functions of subsets of d

L. Olsen (2005)

Colloquium Mathematicae

Similarity:

For a subset E d and x d , the local Hausdorff dimension function of E at x is defined by d i m H , l o c ( x , E ) = l i m r 0 d i m H ( E B ( x , r ) ) where d i m H denotes the Hausdorff dimension. We give a complete characterization of the set of functions that are local Hausdorff dimension functions. In fact, we prove a significantly more general result, namely, we give a complete characterization of those functions that are local dimension functions of an arbitrary regular dimension index.

Consistency of the Silver dichotomy in generalised Baire space

Sy-David Friedman (2014)

Fundamenta Mathematicae

Similarity:

Silver’s fundamental dichotomy in the classical theory of Borel reducibility states that any Borel (or even co-analytic) equivalence relation with uncountably many classes has a perfect set of classes. The natural generalisation of this to the generalised Baire space κ κ for a regular uncountable κ fails in Gödel’s L, even for κ-Borel equivalence relations. We show here that Silver’s dichotomy for κ-Borel equivalence relations in κ κ for uncountable regular κ is however consistent (with...

Operators on the stopping time space

Dimitris Apatsidis (2015)

Studia Mathematica

Similarity:

Let S¹ be the stopping time space and ℬ₁(S¹) be the Baire-1 elements of the second dual of S¹. To each element x** in ℬ₁(S¹) we associate a positive Borel measure μ x * * on the Cantor set. We use the measures μ x * * : x * * ( S ¹ ) to characterize the operators T: X → S¹, defined on a space X with an unconditional basis, which preserve a copy of S¹. In particular, if X = S¹, we show that T preserves a copy of S¹ if and only if μ T * * ( x * * ) : x * * ( S ¹ ) is non-separable as a subset of ( 2 ) .

Distances to spaces of affine Baire-one functions

Jiří Spurný (2010)

Studia Mathematica

Similarity:

Let E be a Banach space and let ( B E * ) and ( B E * ) denote the space of all Baire-one and affine Baire-one functions on the dual unit ball B E * , respectively. We show that there exists a separable L₁-predual E such that there is no quantitative relation between d i s t ( f , ( B E * ) ) and d i s t ( f , ( B E * ) ) , where f is an affine function on B E * . If the Banach space E satisfies some additional assumption, we prove the existence of some such dependence.

Quantization Dimension Estimate of Inhomogeneous Self-Similar Measures

Mrinal Kanti Roychowdhury (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We consider an inhomogeneous measure μ with the inhomogeneous part a self-similar measure ν, and show that for a given r ∈ (0,∞) the lower and the upper quantization dimensions of order r of μ are bounded below by the quantization dimension D r ( ν ) of ν and bounded above by a unique number κ r ( 0 , ) , related to the temperature function of the thermodynamic formalism that arises in the multifractal analysis of μ.

Generic power series on subsets of the unit disk

Balázs Maga, Péter Maga (2022)

Czechoslovak Mathematical Journal

Similarity:

We examine the boundary behaviour of the generic power series f with coefficients chosen from a fixed bounded set Λ in the sense of Baire category. Notably, we prove that for any open subset U of the unit disk D with a nonreal boundary point on the unit circle, f ( U ) is a dense set of . As it is demonstrated, this conclusion does not necessarily hold for arbitrary open sets accumulating to the unit circle. To complement these results, a characterization of coefficient sets having this property...

A remark on functions continuous on all lines

Luděk Zajíček (2019)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove that each linearly continuous function f on n (i.e., each function continuous on all lines) belongs to the first Baire class, which answers a problem formulated by K. C. Ciesielski and D. Miller (2016). The same result holds also for f on an arbitrary Banach space X , if f has moreover the Baire property. We also prove (extending a known finite-dimensional result) that such f on a separable X is continuous at all points outside a first category set which is also null in any usual...

Gorenstein dimension of abelian categories arising from cluster tilting subcategories

Yu Liu, Panyue Zhou (2021)

Czechoslovak Mathematical Journal

Similarity:

Let 𝒞 be a triangulated category and 𝒳 be a cluster tilting subcategory of 𝒞 . Koenig and Zhu showed that the quotient category 𝒞 / 𝒳 is Gorenstein of Gorenstein dimension at most one. But this is not always true when 𝒞 becomes an exact category. The notion of an extriangulated category was introduced by Nakaoka and Palu as a simultaneous generalization of exact categories and triangulated categories. Now let 𝒞 be an extriangulated category with enough projectives and enough injectives, and...

Baire one functions and their sets of discontinuity

Jonald P. Fenecios, Emmanuel A. Cabral, Abraham P. Racca (2016)

Mathematica Bohemica

Similarity:

A characterization of functions in the first Baire class in terms of their sets of discontinuity is given. More precisely, a function f : is of the first Baire class if and only if for each ϵ > 0 there is a sequence of closed sets { C n } n = 1 such that D f = n = 1 C n and ω f ( C n ) < ϵ for each n where ω f ( C n ) = sup { | f ( x ) - f ( y ) | : x , y C n } and D f denotes the set of points of discontinuity of f . The proof of the main theorem is based on a recent ϵ - δ characterization of Baire class one functions as well as on a well-known theorem due to Lebesgue. Some direct applications...

Concerning Sets of the First Baire Category with Respect to Different Metrics

Maria Moszyńska, Grzegorz Sójka (2010)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We prove that if ϱ H and δ are the Hausdorff metric and the radial metric on the space ⁿ of star bodies in ℝ, with 0 in the kernel and with radial function positive and continuous, then a family ⊂ ⁿ that is meager with respect to ϱ H need not be meager with respect to δ. Further, we show that both the family of fractal star bodies and its complement are dense in ⁿ with respect to δ.

Transportation flow problems with Radon measure variables

Marcus Wagner (2000)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

For a multidimensional control problem ( P ) K involving controls u L , we construct a dual problem ( D ) K in which the variables ν to be paired with u are taken from the measure space rca (Ω,) instead of ( L ) * . For this purpose, we add to ( P ) K a Baire class restriction for the representatives of the controls u. As main results, we prove a strong duality theorem and saddle-point conditions.

On Ordinary and Standard Lebesgue Measures on

Gogi Pantsulaia (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

New concepts of Lebesgue measure on are proposed and some of their realizations in the ZFC theory are given. Also, it is shown that Baker’s both measures [1], [2], Mankiewicz and Preiss-Tišer generators [6] and the measure of [4] are not α-standard Lebesgue measures on for α = (1,1,...).

On strong measure zero subsets of κ 2

Aapo Halko, Saharon Shelah (2001)

Fundamenta Mathematicae

Similarity:

We study the generalized Cantor space κ 2 and the generalized Baire space κ κ as analogues of the classical Cantor and Baire spaces. We equip κ κ with the topology where a basic neighborhood of a point η is the set ν: (∀j < i)(ν(j) = η(j)), where i < κ. We define the concept of a strong measure zero set of κ 2 . We prove for successor κ = κ < κ that the ideal of strong measure zero sets of κ 2 is κ -additive, where κ is the size of the smallest unbounded family in κ κ , and that the generalized Borel...

Baire classes of complex L 1 -preduals

Pavel Ludvík, Jiří Spurný (2015)

Czechoslovak Mathematical Journal

Similarity:

Let X be a complex L 1 -predual, non-separable in general. We investigate extendability of complex-valued bounded homogeneous Baire- α functions on the set ext B X * of the extreme points of the dual unit ball B X * to the whole unit ball B X * . As a corollary we show that, given α [ 1 , ω 1 ) , the intrinsic α -th Baire class of X can be identified with the space of bounded homogeneous Baire- α functions on the set ext B X * when ext B X * satisfies certain topological assumptions. The paper is intended to be a complex counterpart to...