Displaying similar documents to “Weighted projections into closed subspaces”

Weighted composition operators on weighted Lorentz spaces

İlker Eryilmaz (2012)

Colloquium Mathematicae

Similarity:

The boundedness, compactness and closedness of the range of weighted composition operators acting on weighted Lorentz spaces L(p,q,wdμ) for 1 < p ≤ ∞, 1 ≤ q ≤ ∞ are characterized.

A remark concerning Putinar's model of hyponormal weighted shifts

Vasile Lauric (2018)

Czechoslovak Mathematical Journal

Similarity:

The question whether a hyponormal weighted shift with trace class self-commutator is the compression modulo the Hilbert-Schmidt class of a normal operator, remains open. It is natural to ask whether Putinar's construction through which he proved that hyponormal operators are subscalar operators provides the answer to the above question. We show that the normal extension provided by Putinar's theory does not lead to the extension that would provide a positive answer to the question. ...

On weighted composition operators acting between weighted Bergman spaces of infinite order and weighted Bloch type spaces

Elke Wolf (2011)

Annales Polonici Mathematici

Similarity:

Let ϕ: → and ψ: → ℂ be analytic maps. They induce a weighted composition operator ψ C ϕ acting between weighted Bergman spaces of infinite order and weighted Bloch type spaces. Under some assumptions on the weights we give a characterization for such an operator to be bounded in terms of the weights involved as well as the functions ψ and ϕ

On the shift operators.

Aggour, M.M. (1996)

International Journal of Mathematics and Mathematical Sciences

Similarity:

Dynamics of differentiation operators on generalized weighted Bergman spaces

Liang Zhang, Ze-Hua Zhou (2015)

Open Mathematics

Similarity:

The chaos of the differentiation operator on generalized weighted Bergman spaces of entire functions has been characterized recently by Bonet and Bonilla in [CAOT 2013], when the differentiation operator is continuous. Motivated by those, we investigate conditions to ensure that finite many powers of differentiation operators are disjoint hypercyclic on generalized weighted Bergman spaces of entire functions.