Displaying similar documents to “The minimal operator and the John--Nirenberg theorem for weighted grand Lebesgue spaces”

The minimal operator and the geometric maximal operator in ℝⁿ

David Cruz-Uribe, SFO (2001)

Studia Mathematica

Similarity:

We prove two-weight norm inequalities in ℝⁿ for the minimal operator f ( x ) = i n f Q x 1 / | Q | Q | f | d y , extending to higher dimensions results obtained by Cruz-Uribe, Neugebauer and Olesen [8] on the real line. As an application we extend to ℝⁿ weighted norm inequalities for the geometric maximal operator M f ( x ) = s u p Q x e x p ( 1 / | Q | Q l o g | f | d x ) , proved by Yin and Muckenhoupt [27]. We also give norm inequalities for the centered minimal operator, study powers of doubling weights and give sufficient conditions for the geometric maximal operator to be equal...

Monotonicity of generalized weighted mean values

Alfred Witkowski (2004)

Colloquium Mathematicae

Similarity:

The author gives a new simple proof of monotonicity of the generalized extended mean values M ( r , s ) = ( ( f s d μ ) / ( f r d μ ) ) 1 / ( s - r ) introduced by F. Qi.

Weighted inequalities for rough square functions through extrapolation

Javier Duoandikoetxea, Edurne Seijo (2002)

Studia Mathematica

Similarity:

Weighted inequalities for some square functions are studied. L² results are proved first using the particular structure of the operator and then extrapolation of weights is applied to extend the results to other L p spaces. In particular, previous results for square functions with rough kernel are obtained in a simpler way and extended to a larger class of weights.

Embeddings of doubling weighted Besov spaces

Dorothee D. Haroske, Philipp Skandera (2014)

Banach Center Publications

Similarity:

We study continuous embeddings of Besov spaces of type B p , q s ( , w ) , where s ∈ ℝ, 0 < p < ∞, 0 < q ≤ ∞, and the weight w is doubling. This approach generalises recent results about embeddings of Muckenhoupt weighted Besov spaces. Our main argument relies on appropriate atomic decomposition techniques of such weighted spaces; here we benefit from earlier results by Bownik. In addition, we discuss some other related weight classes briefly and compare corresponding results.

Two-weighted criteria for integral transforms with multiple kernels

Vakhtang Kokilashvili, Alexander Meskhi (2006)

Banach Center Publications

Similarity:

Necessary and sufficient conditions governing two-weight L p norm estimates for multiple Hardy and potential operators are presented. Two-weight inequalities for potentials defined on nonhomogeneous spaces are also discussed. Sketches of the proofs for most of the results are given.

Centered weighted composition operators via measure theory

Mohammad Reza Jabbarzadeh, Mehri Jafari Bakhshkandi (2018)

Mathematica Bohemica

Similarity:

We describe the centered weighted composition operators on L 2 ( Σ ) in terms of their defining symbols. Our characterizations extend Embry-Wardrop-Lambert’s theorem on centered composition operators.

Weighted composition operators between weighted Banach spaces of holomorphic functions and weighted Bloch type space

Elke Wolf (2009)

Annales Polonici Mathematici

Similarity:

Let ϕ: → and ψ: → ℂ be analytic maps. They induce a weighted composition operator ψ C ϕ acting between weighted Banach spaces of holomorphic functions and weighted Bloch type spaces. Under some assumptions on the weights we give a necessary as well as a sufficient condition for such an operator to be bounded resp. compact.

On weighted composition operators acting between weighted Bergman spaces of infinite order and weighted Bloch type spaces

Elke Wolf (2011)

Annales Polonici Mathematici

Similarity:

Let ϕ: → and ψ: → ℂ be analytic maps. They induce a weighted composition operator ψ C ϕ acting between weighted Bergman spaces of infinite order and weighted Bloch type spaces. Under some assumptions on the weights we give a characterization for such an operator to be bounded in terms of the weights involved as well as the functions ψ and ϕ

Singularities in Muckenhoupt weighted function spaces

Dorothee D. Haroske (2008)

Banach Center Publications

Similarity:

We study weighted function spaces of Lebesgue, Besov and Triebel-Lizorkin type where the weight function belongs to some Muckenhoupt p class. The singularities of functions in these spaces are characterised by means of envelope functions.

First and second order Opial inequalities

Steven Bloom (1997)

Studia Mathematica

Similarity:

Let T γ f ( x ) = ʃ 0 x k ( x , y ) γ f ( y ) d y , where k is a nonnegative kernel increasing in x, decreasing in y, and satisfying a triangle inequality. An nth-order Opial inequality has the form ʃ 0 ( i = 1 n | T γ i f ( x ) | q i | ) | f ( x ) | q 0 w ( x ) d x C ( ʃ 0 | f ( x ) | p v ( x ) d x ) ( q 0 + + q n ) / p . Such inequalities can always be simplified to nth-order reduced inequalities, where the exponent q 0 = 0 . When n = 1, the reduced inequality is a standard weighted norm inequality, and characterizing the weights is easy. We also find necessary and sufficient conditions on the weights for second-order reduced Opial inequalities to hold. ...

Weighted Hardy inequalities and Hardy transforms of weights

Joan Cerdà, Joaquim Martín (2000)

Studia Mathematica

Similarity:

Many problems in analysis are described as weighted norm inequalities that have given rise to different classes of weights, such as A p -weights of Muckenhoupt and B p -weights of Ariño and Muckenhoupt. Our purpose is to show that different classes of weights are related by means of composition with classical transforms. A typical example is the family M p of weights w for which the Hardy transform is L p ( w ) -bounded. A B p -weight is precisely one for which its Hardy transform is in M p , and also a weight...

Existence of solutions to the nonstationary Stokes system in H - μ 2 , 1 , μ ∈ (0,1), in a domain with a distinguished axis. Part 1. Existence near the axis in 2d

W. M. Zajączkowski (2007)

Applicationes Mathematicae

Similarity:

We consider the nonstationary Stokes system with slip boundary conditions in a bounded domain which contains some distinguished axis. We assume that the data functions belong to weighted Sobolev spaces with the weight equal to some power function of the distance to the axis. The aim is to prove the existence of solutions in corresponding weighted Sobolev spaces. The proof is divided into three parts. In the first, the existence in 2d in weighted spaces near the axis is shown. In the...

Complex symmetric weighted composition operators on the Hardy space

Cao Jiang, Shi-An Han, Ze-Hua Zhou (2020)

Czechoslovak Mathematical Journal

Similarity:

This paper identifies a class of complex symmetric weighted composition operators on H 2 ( 𝔻 ) that includes both the unitary and the Hermitian weighted composition operators, as well as a class of normal weighted composition operators identified by Bourdon and Narayan. A characterization of algebraic weighted composition operators with degree no more than two is provided to illustrate that the weight function of a complex symmetric weighted composition operator is not necessarily linear fractional. ...

Weighted bounds for variational Fourier series

Yen Do, Michael Lacey (2012)

Studia Mathematica

Similarity:

For 1 < p < ∞ and for weight w in A p , we show that the r-variation of the Fourier sums of any function f in L p ( w ) is finite a.e. for r larger than a finite constant depending on w and p. The fact that the variation exponent depends on w is necessary. This strengthens previous work of Hunt-Young and is a weighted extension of a variational Carleson theorem of Oberlin-Seeger-Tao-Thiele-Wright. The proof uses weighted adaptation of phase plane analysis and a weighted extension of a variational...

On mean value properties involving a logarithm-type weight

Nikolai G. Kuznecov (2024)

Mathematica Bohemica

Similarity:

Two new assertions characterizing analytically disks in the Euclidean plane 2 are proved. Weighted mean value property of positive solutions to the Helmholtz and modified Helmholtz equations are used for this purpose; the weight has a logarithmic singularity. The obtained results are compared with those without weight that were found earlier.

Existence of solutions to the (rot,div)-system in L₂-weighted spaces

Wojciech M. Zajączkowski (2009)

Applicationes Mathematicae

Similarity:

The existence of solutions to the elliptic problem rot v = w, div v = 0 in Ω ⊂ ℝ³, v · n ̅ | S = 0 , S = ∂Ω, in weighted Hilbert spaces is proved. It is assumed that Ω contains an axis L and the weight is a negative power of the distance to the axis. The main part of the proof is devoted to examining solutions in a neighbourhood of L. Their existence in Ω follows by regularization.

Disc formulas for the weighted Siciak-Zahariuta extremal function

Benedikt Steinar Magnússon, Ragnar Sigurdsson (2007)

Annales Polonici Mathematici

Similarity:

We prove a disc formula for the weighted Siciak-Zahariuta extremal function V X , q for an upper semicontinuous function q on an open connected subset X in ℂⁿ. This function is also known as the weighted Green function with logarithmic pole at infinity and weighted global extremal function.