Displaying similar documents to “Characterization of associate spaces of generalized weighted weak-Lorentz spaces and embeddings”

Weighted L Φ integral inequalities for operators of Hardy type

Steven Bloom, Ron Kerman (1994)

Studia Mathematica

Similarity:

Necessary and sufficient conditions are given on the weights t, u, v, and w, in order for Φ 2 - 1 ( ʃ Φ 2 ( w ( x ) | T f ( x ) | ) t ( x ) d x ) Φ 1 - 1 ( ʃ Φ 1 ( C u ( x ) | f ( x ) | ) v ( x ) d x ) to hold when Φ 1 and Φ 2 are N-functions with Φ 2 Φ 1 - 1 convex, and T is the Hardy operator or a generalized Hardy operator. Weak-type characterizations are given for monotone operators and the connection between weak-type and strong-type inequalities is explored.

The factorization of the weighted Hardy space in terms of multilinear Calderón-Zygmund operators

Suixin He, Shuangping Tao (2023)

Czechoslovak Mathematical Journal

Similarity:

We give a constructive proof of the factorization theorem for the weighted Hardy space in terms of multilinear Calderón-Zygmund operators. The result is also new even in the linear setting. As an application, we obtain the characterization of weighted BMO space via the weighted boundedness of commutators of the multilinear Calderón-Zygmund operators.

Weighted composition operators on weighted Lorentz spaces

İlker Eryilmaz (2012)

Colloquium Mathematicae

Similarity:

The boundedness, compactness and closedness of the range of weighted composition operators acting on weighted Lorentz spaces L(p,q,wdμ) for 1 < p ≤ ∞, 1 ≤ q ≤ ∞ are characterized.

First and second order Opial inequalities

Steven Bloom (1997)

Studia Mathematica

Similarity:

Let T γ f ( x ) = ʃ 0 x k ( x , y ) γ f ( y ) d y , where k is a nonnegative kernel increasing in x, decreasing in y, and satisfying a triangle inequality. An nth-order Opial inequality has the form ʃ 0 ( i = 1 n | T γ i f ( x ) | q i | ) | f ( x ) | q 0 w ( x ) d x C ( ʃ 0 | f ( x ) | p v ( x ) d x ) ( q 0 + + q n ) / p . Such inequalities can always be simplified to nth-order reduced inequalities, where the exponent q 0 = 0 . When n = 1, the reduced inequality is a standard weighted norm inequality, and characterizing the weights is easy. We also find necessary and sufficient conditions on the weights for second-order reduced Opial inequalities to hold. ...

General Gagliardo Inequality and Applications to Weighted Sobolev Spaces

Antonio Avantaggiati, Paola Loreti (2009)

Bollettino dell'Unione Matematica Italiana

Similarity:

In this paper we obtain a more general inequality with respect to a well known inequality due to Gagliardo (see [4], [5]). The inequality contained in [4], [5] has been extended to weighted spaces, obtained as cartesian product of measurable spaces. As application, we obtain a first order weighted Sobolev inequality. This generalize a previous result obtained in [2].