Displaying similar documents to “Invariant measures for random dynamical systems”

Invariant measures for nonexpansive Markov operators on Polish spaces

Tomasz Szarek

Similarity:

New sufficient conditions for the existence of an invariant measure for nonexpansive Markov operators defined on Polish spaces are presented. These criteria are applied to iterated function systems, stochastically perturbed dynamical systems and Poisson stochastic differential equations. We also estimate the Ledrappier version of capacity for invariant measures.

Randomly connected dynamical systems - asymptotic stability

Katarzyna Horbacz (1998)

Annales Polonici Mathematici

Similarity:

We give sufficient conditions for asymptotic stability of a Markov operator governing the evolution of measures due to the action of randomly chosen dynamical systems. We show that the existence of an invariant measure for the transition operator implies the existence of an invariant measure for the semigroup generated by the system.

On a nonstandard approach to invariant measures for Markov operators

Andrzej Wiśnicki (2010)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

We show the existence of invariant measures for Markov-Feller operators defined on completely regular topological spaces which satisfy the classical positivity condition.

Random Dynamical Systems with Jumps and with a Function Type Intensity

Joanna Kubieniec (2016)

Annales Mathematicae Silesianae

Similarity:

In paper [4] there are considered random dynamical systems with randomly chosen jumps acting on Polish spaces. The intensity of this process is a constant λ. In this paper we formulate criteria for the existence of an invariant measure and asymptotic stability for these systems in the case when λ is not constant but a Lipschitz function.

Piecewise-deterministic Markov processes

Jolanta Kazak (2013)

Annales Polonici Mathematici

Similarity:

Poisson driven stochastic differential equations on a separable Banach space are examined. Some sufficient conditions are given for the asymptotic stability of a Markov operator P corresponding to the change of distribution from jump to jump. We also give criteria for the continuous dependence of the invariant measure for P on the intensity of the Poisson process.

Markov operators on the space of vector measures; coloured fractals

Karol Baron, Andrzej Lasota (1998)

Annales Polonici Mathematici

Similarity:

We consider the family 𝓜 of measures with values in a reflexive Banach space. In 𝓜 we introduce the notion of a Markov operator and using an extension of the Fortet-Mourier norm we show some criteria of the asymptotic stability. Asymptotically stable Markov operators can be used to construct coloured fractals.

Irreducible Markov systems on Polish spaces

Katarzyna Horbacz, Tomasz Szarek (2006)

Studia Mathematica

Similarity:

Contractive Markov systems on Polish spaces which arise from graph directed constructions of iterated function systems with place dependent probabilities are considered. It is shown that their stability may be studied using the concentrating methods developed by the second author [Dissert. Math. 415 (2003)]. In this way Werner's results obtained in a locally compact case [J. London Math. Soc. 71 (2005)] are extended to a noncompact setting.

The uniqueness of invariant measures for Markov operators

Tomasz Szarek (2008)

Studia Mathematica

Similarity:

It is shown that Markov operators with equicontinuous dual operators which overlap supports have at most one invariant measure. In this way we extend the well known result proved for Markov operators with the strong Feller property by R. Z. Khas'minski.

Applications of the Kantorovich-Rubinstein maximum principle in the theory of Markov semigroups

Henryk Gacki

Similarity:

We present new sufficient conditions for the asymptotic stability of Markov operators acting on the space of signed measures. Our results are based on two principles. The first one is the LaSalle invariance principle used in the theory of dynamical systems. The second is related to the Kantorovich-Rubinstein theorems concerning the properties of probability metrics. These criteria are applied to stochastically perturbed dynamical systems, a Poisson driven stochastic differential equation...

A criterion of asymptotic stability for Markov-Feller e-chains on Polish spaces

Dawid Czapla (2012)

Annales Polonici Mathematici

Similarity:

Stettner [Bull. Polish Acad. Sci. Math. 42 (1994)] considered the asymptotic stability of Markov-Feller chains, provided the sequence of transition probabilities of the chain converges to an invariant probability measure in the weak sense and converges uniformly with respect to the initial state variable on compact sets. We extend those results to the setting of Polish spaces and relax the original assumptions. Finally, we present a class of Markov-Feller chains with a linear state space...

Markov operators acting on Polish spaces

Tomasz Szarek (1997)

Annales Polonici Mathematici

Similarity:

We prove a new sufficient condition for the asymptotic stability of Markov operators acting on measures. This criterion is applied to iterated function systems.