The stability of Markov operators on Polish spaces

Tomasz Szarek

Studia Mathematica (2000)

  • Volume: 143, Issue: 2, page 145-152
  • ISSN: 0039-3223

Abstract

top
A sufficient condition for the asymptotic stability of Markov operators acting on measures defined on Polish spaces is presented.

How to cite

top

Szarek, Tomasz. "The stability of Markov operators on Polish spaces." Studia Mathematica 143.2 (2000): 145-152. <http://eudml.org/doc/216813>.

@article{Szarek2000,
abstract = {A sufficient condition for the asymptotic stability of Markov operators acting on measures defined on Polish spaces is presented.},
author = {Szarek, Tomasz},
journal = {Studia Mathematica},
keywords = {asymptotic stability; Markov operators},
language = {eng},
number = {2},
pages = {145-152},
title = {The stability of Markov operators on Polish spaces},
url = {http://eudml.org/doc/216813},
volume = {143},
year = {2000},
}

TY - JOUR
AU - Szarek, Tomasz
TI - The stability of Markov operators on Polish spaces
JO - Studia Mathematica
PY - 2000
VL - 143
IS - 2
SP - 145
EP - 152
AB - A sufficient condition for the asymptotic stability of Markov operators acting on measures defined on Polish spaces is presented.
LA - eng
KW - asymptotic stability; Markov operators
UR - http://eudml.org/doc/216813
ER -

References

top
  1. [1] M. F. Barnsley, S. G. Demko, J. H. Elton and J. S. Geronimo, Invariant measures arising from iterated function systems with place dependent probabilities, Ann. Inst. H. Poincaré 24 (1988), 367-394. Zbl0653.60057
  2. [2] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968. Zbl0172.21201
  3. [3] R. M. Dudley, Probabilities and Metrics, Aarhus Universitet, 1976. 
  4. [4] S. Ethier and T. Kurtz, Markov Processes, Wiley, 1986. 
  5. [5] R. Fortet et B. Mourier, Convergence de la répartition empirique vers la répartition théorétique, Ann. Sci. École Norm. Sup. 70 (1953), 267-285. Zbl0053.09601
  6. [6] S. Karlin, Some random walks arising in learning models, Pacific J. Math. 3 (1953), 725-756. Zbl0051.10603
  7. [7] A. Lasota, From fractals to stochastic differential equations, in: Chaos-the Interplay between Stochastic and Deterministic Behaviour (Karpacz, 1995), Springer, 1995. 
  8. [8] A. Lasota and J. A. Yorke, Lower bound technique for Markov operators and iterated function systems, Random Comput. Dynam. 2 (1994), 41-77. Zbl0804.47033
  9. [9] T. Szarek, Markov operators acting on Polish spaces, Ann. Polon. Math. 67 (1997), 247-257. Zbl0903.60052

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.