Lacunary self-similar fractal sets and intersection of Cantor sets.
Igudesman, K. (2003)
Lobachevskii Journal of Mathematics
Similarity:
Igudesman, K. (2003)
Lobachevskii Journal of Mathematics
Similarity:
Balázs Bárány (2009)
Fundamenta Mathematicae
Similarity:
We investigate the properties of the Hausdorff dimension of the attractor of the iterated function system (IFS) {γx,λx,λx+1}. Since two maps have the same fixed point, there are very complicated overlaps, and it is not possible to directly apply known techniques. We give a formula for the Hausdorff dimension of the attractor for Lebesgue almost all parameters (γ,λ), γ < λ. This result only holds for almost all parameters: we find a dense set of parameters (γ,λ) for which the Hausdorff...
Veerman, J.J.P., Stošić, B.D. (2000)
Experimental Mathematics
Similarity:
Lu-ming Shen (2010)
Acta Arithmetica
Similarity:
Michael Keane, K. Károly, Boris Solomyak (2003)
Fundamenta Mathematicae
Similarity:
Consider a graph directed iterated function system (GIFS) on the line which consists of similarities. Assuming neither any separation conditions, nor any restrictions on the contractions, we compute the almost sure dimension of the attractor. Then we apply our result to give a partial answer to an open problem in the field of fractal image recognition concerning some self-affine graph directed attractors in space.
James R. Lee, Manor Mendel, Mohammad Moharrami (2012)
Fundamenta Mathematicae
Similarity:
For every ε > 0, any subset of ℝⁿ with Hausdorff dimension larger than (1-ε)n must have ultrametric distortion larger than 1/(4ε).
Jaroslav Hančl, Radhakrishnan Nair, Lukáš Novotný, Jan Šustek (2012)
Acta Arithmetica
Similarity:
Guifeng Huang, Lidong Wang (2014)
Annales Polonici Mathematici
Similarity:
A solution of the Feigenbaum functional equation is called a Feigenbaum map. We investigate the likely limit set (i.e. the maximal attractor in the sense of Milnor) of a non-unimodal Feigenbaum map, prove that it is a minimal set that attracts almost all points, and then estimate its Hausdorff dimension. Finally, for every s ∈ (0,1), we construct a non-unimodal Feigenbaum map with a likely limit set whose Hausdorff dimension is s.
Themis Mitsis (2004)
Studia Mathematica
Similarity:
We prove that the complement of a higher-dimensional Nikodym set must have full Hausdorff dimension.
Jonathan M. Fraser (2012)
Studia Mathematica
Similarity:
We investigate the box dimensions of inhomogeneous self-similar sets. Firstly, we extend some results of Olsen and Snigireva by computing the upper box dimensions assuming some mild separation conditions. Secondly, we investigate the more difficult problem of computing the lower box dimension. We give some non-trivial bounds and provide examples to show that lower box dimension behaves much more strangely than upper box dimension, Hausdorff dimension and packing dimension.
Antti Käenmäki, Markku Vilppolainen (2008)
Fundamenta Mathematicae
Similarity:
It is well known that the open set condition and the positivity of the t-dimensional Hausdorff measure are equivalent on self-similar sets, where t is the zero of the topological pressure. We prove an analogous result for a class of Moran constructions and we study different kinds of Moran constructions in this respect.
Yan-Yan Liu, Jun Wu (2001)
Acta Arithmetica
Similarity:
T. W. Körner (2008)
Studia Mathematica
Similarity:
There is no non-trivial constraint on the Hausdorff dimension of sums of a set with itself.
Amit Priyadarshi (2017)
Waves, Wavelets and Fractals
Similarity:
In this paper we study infinite graph-directed iterated function systems on compact metric spaces given by contractive ‘infinitesimal similitudes’. We derive formula for the Hausdorff dimension of the ‘invariant set’ for such a system in terms of the spectral radii of the naturally associated family of the ‘Perron- Frobenius operators’. The results in this paper generalizes the results obtained in [20], where finite graphdirected systems and infinite iterated function systems are considered ...
Balázs Bárány (2009)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
We investigate properties of the zero of the subadditive pressure which is a most important tool to estimate the Hausdorff dimension of the attractor of a non-conformal iterated function system (IFS). Our result is a generalization of the main results of Miao and Falconer [Fractals 15 (2007)] and Manning and Simon [Nonlinearity 20 (2007)].
Andrew Ferguson, Thomas Jordan, Pablo Shmerkin (2010)
Fundamenta Mathematicae
Similarity:
We study the orthogonal projections of a large class of self-affine carpets, which contains the carpets of Bedford and McMullen as special cases. Our main result is that if Λ is such a carpet, and certain natural irrationality conditions hold, then every orthogonal projection of Λ in a non-principal direction has Hausdorff dimension min(γ,1), where γ is the Hausdorff dimension of Λ. This generalizes a recent result of Peres and Shmerkin on sums of Cantor sets.
Eda Cesaratto, Brigitte Vallée (2006)
Acta Arithmetica
Similarity:
Quansheng Liu (1993)
Publications mathématiques et informatique de Rennes
Similarity:
T. Przymusiński (1976)
Colloquium Mathematicae
Similarity:
Ondřej Zindulka (2012)
Fundamenta Mathematicae
Similarity:
We prove that each analytic set in ℝⁿ contains a universally null set of the same Hausdorff dimension and that each metric space contains a universally null set of Hausdorff dimension no less than the topological dimension of the space. Similar results also hold for universally meager sets. An essential part of the construction involves an analysis of Lipschitz-like mappings of separable metric spaces onto Cantor cubes and self-similar sets.
Michał Rams (2006)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
We estimate from above and below the Hausdorff dimension of SRB measure for contracting-on-average baker maps.
D. W. Hajek (1982)
Matematički Vesnik
Similarity:
F. Przytycki, M. Urbański (1989)
Studia Mathematica
Similarity:
W. Kulpa (1972)
Colloquium Mathematicae
Similarity:
Piotr Borodulin-Nadzieja, David Chodounský (2015)
Fundamenta Mathematicae
Similarity:
We define and study two classes of uncountable ⊆*-chains: Hausdorff towers and Suslin towers. We discuss their existence in various models of set theory. Some of the results and methods are used to provide examples of indestructible gaps not equivalent to a Hausdorff gap. We also indicate possible ways of developing a structure theory for towers based on classification of their Tukey types.
Masakazu Naito, Sohtaro Doro, Daisuke Minematsu, Ryohei Miyadera (2009)
Visual Mathematics
Similarity: