Displaying similar documents to “Approximation theorems for compactifications”

The Banach algebra of continuous bounded functions with separable support

M. R. Koushesh (2012)

Studia Mathematica

Similarity:

We prove a commutative Gelfand-Naimark type theorem, by showing that the set C s ( X ) of continuous bounded (real or complex valued) functions with separable support on a locally separable metrizable space X (provided with the supremum norm) is a Banach algebra, isometrically isomorphic to C₀(Y) for some unique (up to homeomorphism) locally compact Hausdorff space Y. The space Y, which we explicitly construct as a subspace of the Stone-Čech compactification of X, is countably compact, and if...

Characterizing metric spaces whose hyperspaces are homeomorphic to ℓ₂

T. Banakh, R. Voytsitskyy (2008)

Colloquium Mathematicae

Similarity:

It is shown that the hyperspace C l d H ( X ) (resp. B d d H ( X ) ) of non-empty closed (resp. closed and bounded) subsets of a metric space (X,d) is homeomorphic to ℓ₂ if and only if the completion X̅ of X is connected and locally connected, X is topologically complete and nowhere locally compact, and each subset (resp. each bounded subset) of X is totally bounded.

The (dis)connectedness of products of Hausdorff spaces in the box topology

Vitalij A. Chatyrko (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper the following two propositions are proved: (a) If X α , α A , is an infinite system of connected spaces such that infinitely many of them are nondegenerated completely Hausdorff topological spaces then the box product α A X α can be decomposed into continuum many disjoint nonempty open subsets, in particular, it is disconnected. (b) If X α , α A , is an infinite system of Brown Hausdorff topological spaces then the box product α A X α is also Brown Hausdorff, and hence, it is connected. A space...

Szpilrajn type theorem for concentration dimension

Jozef Myjak, Tomasz Szarek (2002)

Fundamenta Mathematicae

Similarity:

Let X be a locally compact, separable metric space. We prove that d i m T X = i n f d i m L X ' : X ' i s h o m e o m o r p h i c t o X , where d i m L X and d i m T X stand for the concentration dimension and the topological dimension of X, respectively.

The degree of approximation by Hausdorff means of a conjugate Fourier series

Sergiusz Kęska (2016)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

The purpose of this paper is to analyze the degree of approximation of a function f ¯ that is a conjugate of a function f belonging to the Lipschitz class by Hausdorff means of a conjugate series of the Fourier series.

When ( E , σ ( E , E ' ) ) is a D F -space?

Dorota Krassowska, Wiesƚaw Śliwa (1992)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let ( E , t ) be a Hausdorff locally convex space. Either ( E , σ ( E , E ' ) ) or ( E ' , σ ( E ' , E ) ) is a D F -space iff E is of finite dimension (THEOREM). This is the most general solution of the problem studied by Iyahen [2] and Radenovič [3].

A compact Hausdorff topology that is a T₁-complement of itself

Dmitri Shakhmatov, Michael Tkachenko (2002)

Fundamenta Mathematicae

Similarity:

Topologies τ₁ and τ₂ on a set X are called T₁-complementary if τ₁ ∩ τ₂ = X∖F: F ⊆ X is finite ∪ ∅ and τ₁∪τ₂ is a subbase for the discrete topology on X. Topological spaces ( X , τ X ) and ( Y , τ Y ) are called T₁-complementary provided that there exists a bijection f: X → Y such that τ X and f - 1 ( U ) : U τ Y are T₁-complementary topologies on X. We provide an example of a compact Hausdorff space of size 2 which is T₁-complementary to itself ( denotes the cardinality of the continuum). We prove that the existence of a compact...

On the Hausdorff Dimension of Topological Subspaces

Tomasz Szarek, Maciej Ślęczka (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

It is shown that every Polish space X with d i m T X d admits a compact subspace Y such that d i m H Y d where d i m T and d i m H denote the topological and Hausdorff dimensions, respectively.

Solutions to a class of singular quasilinear elliptic equations

Lin Wei, Zuodong Yang (2010)

Annales Polonici Mathematici

Similarity:

We study the existence of positive solutions to ⎧ d i v ( | u | p - 2 u ) + q ( x ) u - γ = 0 on Ω, ⎨ ⎩ u = 0 on ∂Ω, where Ω is N or an unbounded domain, q(x) is locally Hölder continuous on Ω and p > 1, γ > -(p-1).