The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Convolution-dominated integral operators”

Translation-invariant operators on Lorentz spaces L(1,q) with 0 < q < 1

Leonardo Colzani, Peter Sjögren (1999)

Studia Mathematica

Similarity:

We study convolution operators bounded on the non-normable Lorentz spaces L 1 , q of the real line and the torus. Here 0 < q < 1. On the real line, such an operator is given by convolution with a discrete measure, but on the torus a convolutor can also be an integrable function. We then give some necessary and some sufficient conditions for a measure or a function to be a convolutor on L 1 , q . In particular, when the positions of the atoms of a discrete measure are linearly independent over...

The V a -deformation of the classical convolution

Anna Dorota Krystek (2007)

Banach Center Publications

Similarity:

We study deformations of the classical convolution. For every invertible transformation T:μ ↦ Tμ, we are able to define a new associative convolution of measures by μ * T ν = T - 1 ( T μ * T ν ) . We deal with the V a -deformation of the classical convolution. We prove the analogue of the classical Lévy-Khintchine formula. We also show the central limit measure, which turns out to be the standard Gaussian measure. Moreover, we calculate the Poisson measure in the V a -deformed classical convolution and give the orthogonal...

On spectrality of the algebra of convolution dominated operators

Gero Fendle, Karlheinz Gröchenig, Michael Leinert (2007)

Banach Center Publications

Similarity:

If G is a discrete group, the algebra CD(G) of convolution dominated operators on l²(G) (see Definition 1 below) is canonically isomorphic to a twisted L¹-algebra l ¹ ( G , l ( G ) , T ) . For amenable and rigidly symmetric G we use this to show that any element of this algebra is invertible in the algebra itself if and only if it is invertible as a bounded operator on l²(G), i.e. CD(G) is spectral in the algebra of all bounded operators. For G commutative, this result is known (see [1], [6]), for G noncommutative...

A comparison on the commutative neutrix convolution of distributions and the exchange formula

Adem Kiliçman (2001)

Czechoslovak Mathematical Journal

Similarity:

Let f ˜ , g ˜ be ultradistributions in 𝒵 ' and let f ˜ n = f ˜ * δ n and g ˜ n = g ˜ * σ n where { δ n } is a sequence in 𝒵 which converges to the Dirac-delta function δ . Then the neutrix product f ˜ g ˜ is defined on the space of ultradistributions 𝒵 ' as the neutrix limit of the sequence { 1 2 ( f ˜ n g ˜ + f ˜ g ˜ n ) } provided the limit h ˜ exist in the sense that N - l i m n 1 2 f ˜ n g ˜ + f ˜ g ˜ n , ψ = h ˜ , ψ for all ψ in 𝒵 . We also prove that the neutrix convolution product f * g exist in 𝒟 ' , if and only if the neutrix product f ˜ g ˜ exist in 𝒵 ' and the exchange formula F ( f * g ) = f ˜ g ˜ is then satisfied.

Characterization of the convolution operators on quasianalytic classes of Beurling type that admit a continuous linear right inverse

José Bonet, Reinhold Meise (2008)

Studia Mathematica

Similarity:

Extending previous work by Meise and Vogt, we characterize those convolution operators, defined on the space ( ω ) ( ) of (ω)-quasianalytic functions of Beurling type of one variable, which admit a continuous linear right inverse. Also, we characterize those (ω)-ultradifferential operators which admit a continuous linear right inverse on ( ω ) [ a , b ] for each compact interval [a,b] and we show that this property is in fact weaker than the existence of a continuous linear right inverse on ( ω ) ( ) .

The category of compactifications and its coreflections

Anthony W. Hager, Brian Wynne (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We define “the category of compactifications”, which is denoted , and consider its family of coreflections, denoted . We show that is a complete lattice with bottom the identity and top an interpretation of the Čech–Stone β . A c implies the assignment to each locally compact, noncompact Y a compactification minimum for membership in the “object-range” of c . We describe the minimum proper compactifications of locally compact, noncompact spaces, show that these generate...

A convolution property of the Cantor-Lebesgue measure, II

Daniel M. Oberlin (2003)

Colloquium Mathematicae

Similarity:

For 1 ≤ p,q ≤ ∞, we prove that the convolution operator generated by the Cantor-Lebesgue measure on the circle is a contraction whenever it is bounded from L p ( ) to L q ( ) . We also give a condition on p which is necessary if this operator maps L p ( ) into L²().

L p ( ) bounds for commutators of convolution operators

Guoen Hu, Qiyu Sun, Xin Wang (2002)

Colloquium Mathematicae

Similarity:

The L p ( ) boundedness is established for commutators generated by BMO(ℝⁿ) functions and convolution operators whose kernels satisfy certain Fourier transform estimates. As an application, a new result about the L p ( ) boundedness is obtained for commutators of homogeneous singular integral operators whose kernels satisfy the Grafakos-Stefanov condition.

An integral transform and its application in the propagation of Lorentz-Gaussian beams

A. Belafhal, E.M. El Halba, T. Usman (2021)

Communications in Mathematics

Similarity:

The aim of the present note is to derive an integral transform I = 0 x s + 1 e - β x 2 + γ x M k , ν 2 ζ x 2 J μ ( χ x ) d x , involving the product of the Whittaker function M k , ν and the Bessel function of the first kind J μ of order μ . As a by-product, we also derive certain new integral transforms as particular cases for some special values of the parameters k and ν of the Whittaker function. Eventually, we show the application of the integral in the propagation of hollow higher-order circular Lorentz-cosh-Gaussian beams through an ABCD optical system...

One-parameter semigroups in the convolution algebra of rapidly decreasing distributions

(2012)

Colloquium Mathematicae

Similarity:

The paper is devoted to infinitely differentiable one-parameter convolution semigroups in the convolution algebra C ' ( ; M m × m ) of matrix valued rapidly decreasing distributions on ℝⁿ. It is proved that G C ' ( ; M m × m ) is the generating distribution of an i.d.c.s. if and only if the operator t m × m - G on 1 + n satisfies the Petrovskiĭ condition for forward evolution. Some consequences are discussed.