Displaying similar documents to “The Covering Principle for Darboux Baire 1 functions”

On Borel reducibility in generalized Baire space

Sy-David Friedman, Tapani Hyttinen, Vadim Kulikov (2015)

Fundamenta Mathematicae

Similarity:

We study the Borel reducibility of Borel equivalence relations on the generalized Baire space κ κ for an uncountable κ with κ < κ = κ . The theory looks quite different from its classical counterpart where κ = ω, although some basic theorems do generalize.

On the closure of Baire classes under transfinite convergences

Tamás Mátrai (2004)

Fundamenta Mathematicae

Similarity:

Let X be a Polish space and Y be a separable metric space. For a fixed ξ < ω₁, consider a family f α : X Y ( α < ω ) of Baire-ξ functions. Answering a question of Tomasz Natkaniec, we show that if for a function f: X → Y, the set α < ω : f α ( x ) f ( x ) is finite for every x ∈ X, then f itself is necessarily Baire-ξ. The proof is based on a characterization of Σ η sets which can be interesting in its own right.

Functions of Baire class one

Denny H. Leung, Wee-Kee Tang (2003)

Fundamenta Mathematicae

Similarity:

Let K be a compact metric space. A real-valued function on K is said to be of Baire class one (Baire-1) if it is the pointwise limit of a sequence of continuous functions. We study two well known ordinal indices of Baire-1 functions, the oscillation index β and the convergence index γ. It is shown that these two indices are fully compatible in the following sense: a Baire-1 function f satisfies β ( f ) ω ξ · ω ξ for some countable ordinals ξ₁ and ξ₂ if and only if there exists a sequence (fₙ) of Baire-1...

Extension of functions with small oscillation

Denny H. Leung, Wee-Kee Tang (2006)

Fundamenta Mathematicae

Similarity:

A classical theorem of Kuratowski says that every Baire one function on a G δ subspace of a Polish (= separable completely metrizable) space X can be extended to a Baire one function on X. Kechris and Louveau introduced a finer gradation of Baire one functions into small Baire classes. A Baire one function f is assigned into a class in this hierarchy depending on its oscillation index β(f). We prove a refinement of Kuratowski’s theorem: if Y is a subspace of a metric space X and f is a...

On the k -Baire property

Alessandro Fedeli (1993)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this note we show the following theorem: “Let X be an almost k -discrete space, where k is a regular cardinal. Then X is k + -Baire iff it is a k -Baire space and every point- k open cover 𝒰 of X such that card ( 𝒰 ) k is locally- k at a dense set of points.” For k = 0 we obtain a well-known characterization of Baire spaces. The case k = 1 is also discussed.

Descriptive properties of elements of biduals of Banach spaces

Pavel Ludvík, Jiří Spurný (2012)

Studia Mathematica

Similarity:

If E is a Banach space, any element x** in its bidual E** is an affine function on the dual unit ball B E * that might possess a variety of descriptive properties with respect to the weak* topology. We prove several results showing that descriptive properties of x** are quite often determined by the behaviour of x** on the set of extreme points of B E * , generalizing thus results of J. Saint Raymond and F. Jellett. We also prove a result on the relation between Baire classes and intrinsic Baire...

Rudin-like sets and hereditary families of compact sets

Étienne Matheron, Miroslav Zelený (2005)

Fundamenta Mathematicae

Similarity:

We show that a comeager Π₁¹ hereditary family of compact sets must have a dense G δ subfamily which is also hereditary. Using this, we prove an “abstract” result which implies the existence of independent ℳ ₀-sets, the meagerness of ₀-sets with the property of Baire, and generalizations of some classical results of Mycielski. Finally, we also give some natural examples of true F σ δ sets.

Consistency of the Silver dichotomy in generalised Baire space

Sy-David Friedman (2014)

Fundamenta Mathematicae

Similarity:

Silver’s fundamental dichotomy in the classical theory of Borel reducibility states that any Borel (or even co-analytic) equivalence relation with uncountably many classes has a perfect set of classes. The natural generalisation of this to the generalised Baire space κ κ for a regular uncountable κ fails in Gödel’s L, even for κ-Borel equivalence relations. We show here that Silver’s dichotomy for κ-Borel equivalence relations in κ κ for uncountable regular κ is however consistent (with...

Sharkovskiĭ's theorem holds for some discontinuous functions

Piotr Szuca (2003)

Fundamenta Mathematicae

Similarity:

We show that the Sharkovskiĭ ordering of periods of a continuous real function is also valid for every function with connected G δ graph. In particular, it is valid for every DB₁ function and therefore for every derivative. As a tool we apply an Itinerary Lemma for functions with connected G δ graph.

Insertion of a Contra-Baire- 1 (Baire- . 5 ) Function

Majid Mirmiran (2019)

Communications in Mathematics

Similarity:

Necessary and sufficient conditions in terms of lower cut sets are given for the insertion of a Baire- . 5 function between two comparable real-valued functions on the topological spaces that F σ -kernel of sets are F σ -sets.

Typical multifractal box dimensions of measures

L. Olsen (2011)

Fundamenta Mathematicae

Similarity:

We study the typical behaviour (in the sense of Baire’s category) of the multifractal box dimensions of measures on d . We prove that in many cases a typical measure μ is as irregular as possible, i.e. the lower multifractal box dimensions of μ attain the smallest possible value and the upper multifractal box dimensions of μ attain the largest possible value.

Distances to spaces of affine Baire-one functions

Jiří Spurný (2010)

Studia Mathematica

Similarity:

Let E be a Banach space and let ( B E * ) and ( B E * ) denote the space of all Baire-one and affine Baire-one functions on the dual unit ball B E * , respectively. We show that there exists a separable L₁-predual E such that there is no quantitative relation between d i s t ( f , ( B E * ) ) and d i s t ( f , ( B E * ) ) , where f is an affine function on B E * . If the Banach space E satisfies some additional assumption, we prove the existence of some such dependence.

Extending n times differentiable functions of several variables

Hajrudin Fejzić, Dan Rinne, Clifford E. Weil (1999)

Czechoslovak Mathematical Journal

Similarity:

It is shown that n times Peano differentiable functions defined on a closed subset of m and satisfying a certain condition on that set can be extended to n times Peano differentiable functions defined on m if and only if the n th order Peano derivatives are Baire class one functions.

Non-separable Banach spaces with non-meager Hamel basis

Taras Banakh, Mirna Džamonja, Lorenz Halbeisen (2008)

Studia Mathematica

Similarity:

We show that an infinite-dimensional complete linear space X has: ∙ a dense hereditarily Baire Hamel basis if |X| ≤ ⁺; ∙ a dense non-meager Hamel basis if | X | = κ ω = 2 κ for some cardinal κ.