The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Quotients of Banach Spaces with the Daugavet Property”

Proper subspaces and compatibility

Esteban Andruchow, Eduardo Chiumiento, María Eugenia Di Iorio y Lucero (2015)

Studia Mathematica

Similarity:

Let 𝓔 be a Banach space contained in a Hilbert space 𝓛. Assume that the inclusion is continuous with dense range. Following the terminology of Gohberg and Zambickiĭ, we say that a bounded operator on 𝓔 is a proper operator if it admits an adjoint with respect to the inner product of 𝓛. A proper operator which is self-adjoint with respect to the inner product of 𝓛 is called symmetrizable. By a proper subspace 𝓢 we mean a closed subspace of 𝓔 which is the range of a proper projection....

Sobczyk's theorems from A to B.

Félix Cabello Sánchez, Jesús M. Fernández Castillo, David Yost (2000)

Extracta Mathematicae

Similarity:

Sobczyk's theorem is usually stated as: . Nevertheless, our understanding is not complete until we also recall: . Now the limits of the phenomenon are set: although c is complemented in separable superspaces, it is not necessarily complemented in a non-separable superspace, such as l.