Displaying similar documents to “Quotients of Banach Spaces with the Daugavet Property”

Proper subspaces and compatibility

Esteban Andruchow, Eduardo Chiumiento, María Eugenia Di Iorio y Lucero (2015)

Studia Mathematica

Similarity:

Let 𝓔 be a Banach space contained in a Hilbert space 𝓛. Assume that the inclusion is continuous with dense range. Following the terminology of Gohberg and Zambickiĭ, we say that a bounded operator on 𝓔 is a proper operator if it admits an adjoint with respect to the inner product of 𝓛. A proper operator which is self-adjoint with respect to the inner product of 𝓛 is called symmetrizable. By a proper subspace 𝓢 we mean a closed subspace of 𝓔 which is the range of a proper projection....

Sobczyk's theorems from A to B.

Félix Cabello Sánchez, Jesús M. Fernández Castillo, David Yost (2000)

Extracta Mathematicae

Similarity:

Sobczyk's theorem is usually stated as: . Nevertheless, our understanding is not complete until we also recall: . Now the limits of the phenomenon are set: although c is complemented in separable superspaces, it is not necessarily complemented in a non-separable superspace, such as l.