The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the size of quotients of function spaces on a topological group”

On topological groups with a small base and metrizability

Saak Gabriyelyan, Jerzy Kąkol, Arkady Leiderman (2015)

Fundamenta Mathematicae

Similarity:

A (Hausdorff) topological group is said to have a -base if it admits a base of neighbourhoods of the unit, U α : α , such that U α U β whenever β ≤ α for all α , β . The class of all metrizable topological groups is a proper subclass of the class T G of all topological groups having a -base. We prove that a topological group is metrizable iff it is Fréchet-Urysohn and has a -base. We also show that any precompact set in a topological group G T G is metrizable, and hence G is strictly angelic. We deduce from...

Functionals on Banach Algebras with Scattered Spectra

H. S. Mustafayev (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let A be a complex, commutative Banach algebra and let M A be the structure space of A. Assume that there exists a continuous homomorphism h:L¹(G) → A with dense range, where L¹(G) is a group algebra of the locally compact abelian group G. The main results of this note can be summarized as follows: (a) If every weakly almost periodic functional on A with compact spectra is almost periodic, then the space M A is scattered (i.e., M A has no nonempty perfect subset). (b) Weakly almost periodic...

The Lindelöf property in Banach spaces

B. Cascales, I. Namioka, J. Orihuela (2003)

Studia Mathematica

Similarity:

A topological space (T,τ) is said to be fragmented by a metric d on T if each non-empty subset of T has non-empty relatively open subsets of arbitrarily small d-diameter. The basic theorem of the present paper is the following. Let (M,ϱ) be a metric space with ϱ bounded and let D be an arbitrary index set. Then for a compact subset K of the product space M D the following four conditions are equivalent: (i) K is fragmented by d D , where, for each S ⊂ D, d S ( x , y ) = s u p ϱ ( x ( t ) , y ( t ) ) : t S . (ii) For each countable subset...

Nonnormality of remainders of some topological groups

Aleksander V. Arhangel'skii, J. van Mill (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

It is known that every remainder of a topological group is Lindelöf or pseudocompact. Motivated by this result, we study in this paper when a topological group G has a normal remainder. In a previous paper we showed that under mild conditions on G , the Continuum Hypothesis implies that if the Čech-Stone remainder G * of G is normal, then it is Lindelöf. Here we continue this line of investigation, mainly for the case of precompact groups. We show that no pseudocompact group, whose weight...

Characterising weakly almost periodic functionals on the measure algebra

Matthew Daws (2011)

Studia Mathematica

Similarity:

Let G be a locally compact group, and consider the weakly almost periodic functionals on M(G), the measure algebra of G, denoted by WAP(M(G)). This is a C*-subalgebra of the commutative C*-algebra M(G)*, and so has character space, say K W A P . In this paper, we investigate properties of K W A P . We present a short proof that K W A P can naturally be turned into a semigroup whose product is separately continuous; at the Banach algebra level, this product is simply the natural one induced by the Arens...

On universality of countable and weak products of sigma hereditarily disconnected spaces

Taras Banakh, Robert Cauty (2001)

Fundamenta Mathematicae

Similarity:

Suppose a metrizable separable space Y is sigma hereditarily disconnected, i.e., it is a countable union of hereditarily disconnected subspaces. We prove that the countable power X ω of any subspace X ⊂ Y is not universal for the class ₂ of absolute G δ σ -sets; moreover, if Y is an absolute F σ δ -set, then X ω contains no closed topological copy of the Nagata space = W(I,ℙ); if Y is an absolute G δ -set, then X ω contains no closed copy of the Smirnov space σ = W(I,0). On the other hand, the countable...

James boundaries and σ-fragmented selectors

B. Cascales, M. Muñoz, J. Orihuela (2008)

Studia Mathematica

Similarity:

We study the boundary structure for w*-compact subsets of dual Banach spaces. To be more precise, for a Banach space X, 0 < ϵ < 1 and a subset T of the dual space X* such that ⋃ B(t,ϵ): t ∈ T contains a James boundary for B X * we study different kinds of conditions on T, besides T being countable, which ensure that X * = s p a n T ¯ | | · | | . (SP) We analyze two different non-separable cases where the equality (SP) holds: (a) if J : X 2 B X * is the duality mapping and there exists a σ-fragmented map f: X → X* such that...

Addition theorems for dense subspaces

Aleksander V. Arhangel&#039;skii (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We study topological spaces that can be represented as the union of a finite collection of dense metrizable subspaces. The assumption that the subspaces are dense in the union plays a crucial role below. In particular, Example 3.1 shows that a paracompact space X which is the union of two dense metrizable subspaces need not be a p -space. However, if a normal space X is the union of a finite family μ of dense subspaces each of which is metrizable by a complete metric, then X is also metrizable...

On the uniqueness of periodic decomposition

Viktor Harangi (2011)

Fundamenta Mathematicae

Similarity:

Let a , . . . , a k be arbitrary nonzero real numbers. An ( a , . . . , a k ) -decomposition of a function f:ℝ → ℝ is a sum f + + f k = f where f i : is an a i -periodic function. Such a decomposition is not unique because there are several solutions of the equation h + + h k = 0 with h i : a i -periodic. We will give solutions of this equation with a certain simple structure (trivial solutions) and study whether there exist other solutions or not. If not, we say that the ( a , . . . , a k ) -decomposition is essentially unique. We characterize those periods for which essential...

A countably cellular topological group all of whose countable subsets are closed need not be -factorizable

Mihail G. Tkachenko (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We construct a Hausdorff topological group G such that 1 is a precalibre of G (hence, G has countable cellularity), all countable subsets of G are closed and C -embedded in G , but G is not -factorizable. This solves Problem 8.6.3 from the book “Topological Groups and Related Structures" (2008) in the negative.

Exponential separability is preserved by some products

Vladimir Vladimirovich Tkachuk (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We show that exponential separability is an inverse invariant of closed maps with countably compact exponentially separable fibers. This implies that it is preserved by products with a scattered compact factor and in the products of sequential countably compact spaces. We also provide an example of a σ -compact crowded space in which all countable subspaces are scattered. If X is a Lindelöf space and every Y X with | Y | 2 ω 1 is scattered, then X is functionally countable; if every Y X with | Y | 2 𝔠 is scattered,...

On Hattori spaces

A. Bouziad, E. Sukhacheva (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

For a subset A of the real line , Hattori space H ( A ) is a topological space whose underlying point set is the reals and whose topology is defined as follows: points from A are given the usual Euclidean neighborhoods while remaining points are given the neighborhoods of the Sorgenfrey line. In this paper, among other things, we give conditions on A which are sufficient and necessary for H ( A ) to be respectively almost Čech-complete, Čech-complete, quasicomplete, Čech-analytic and weakly separated...

Extension of point-finite partitions of unity

Haruto Ohta, Kaori Yamazaki (2006)

Fundamenta Mathematicae

Similarity:

A subspace A of a topological space X is said to be P γ -embedded ( P γ (point-finite)-embedded) in X if every (point-finite) partition of unity α on A with |α| ≤ γ extends to a (point-finite) partition of unity on X. The main results are: (Theorem A) A subspace A of X is P γ (point-finite)-embedded in X iff it is P γ -embedded and every countable intersection B of cozero-sets in X with B ∩ A = ∅ can be separated from A by a cozero-set in X. (Theorem B) The product A × [0,1] is P γ (point-finite)-embedded...

A note on spaces with countable extent

Yan-Kui Song (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let P be a topological property. A space X is said to be star P if whenever 𝒰 is an open cover of X , there exists a subspace A X with property P such that X = S t ( A , 𝒰 ) . In this note, we construct a Tychonoff pseudocompact SCE-space which is not star Lindelöf, which gives a negative answer to a question of Rojas-Sánchez and Tamariz-Mascarúa.

On monotonic functions from the unit interval into a Banach space with uncountable sets of points of discontinuity

Artur Michalak (2003)

Studia Mathematica

Similarity:

We say that a function f from [0,1] to a Banach space X is increasing with respect to E ⊂ X* if x* ∘ f is increasing for every x* ∈ E. We show that if f: [0,1] → X is an increasing function with respect to a norming subset E of X* with uncountably many points of discontinuity and Q is a countable dense subset of [0,1], then (1) l i n f ( [ 0 , 1 ] ) ¯ contains an order isomorphic copy of D(0,1), (2) l i n f ( Q ) ¯ contains an isomorphic copy of C([0,1]), (3) l i n f ( [ 0 , 1 ] ) ¯ / l i n f ( Q ) ¯ contains an isomorphic copy of c₀(Γ) for some uncountable...

Structure of Rademacher subspaces in Cesàro type spaces

Sergey V. Astashkin, Lech Maligranda (2015)

Studia Mathematica

Similarity:

The structure of the closed linear span of the Rademacher functions in the Cesàro space C e s is investigated. It is shown that every infinite-dimensional subspace of either is isomorphic to l₂ and uncomplemented in C e s , or contains a subspace isomorphic to c₀ and complemented in . The situation is rather different in the p-convexification of C e s if 1 < p < ∞.

A nice subclass of functionally countable spaces

Vladimir Vladimirovich Tkachuk (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A space X is functionally countable if f ( X ) is countable for any continuous function f : X . We will call a space X exponentially separable if for any countable family of closed subsets of X , there exists a countable set A X such that A 𝒢 whenever 𝒢 and 𝒢 . Every exponentially separable space is functionally countable; we will show that for some nice classes of spaces exponential separability coincides with functional countability. We will also establish that the class of exponentially separable...

On star covering properties related to countable compactness and pseudocompactness

Marcelo D. Passos, Heides L. Santana, Samuel G. da Silva (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove a number of results on star covering properties which may be regarded as either generalizations or specializations of topological properties related to the ones mentioned in the title of the paper. For instance, we give a new, entirely combinatorial proof of the fact that Ψ -spaces constructed from infinite almost disjoint families are not star-compact. By going a little further we conclude that if X is a star-compact space within a certain class, then X is neither first countable...

Homeomorphism groups of Sierpiński carpets and Erdős space

Jan J. Dijkstra, Dave Visser (2010)

Fundamenta Mathematicae

Similarity:

Erdős space is the “rational” Hilbert space, that is, the set of vectors in ℓ² with all coordinates rational. Erdős proved that is one-dimensional and homeomorphic to its own square × , which makes it an important example in dimension theory. Dijkstra and van Mill found topological characterizations of . Let M n + 1 , n ∈ ℕ, be the n-dimensional Menger continuum in n + 1 , also known as the n-dimensional Sierpiński carpet, and let D be a countable dense subset of M n + 1 . We consider the topological group...

Infinite-Dimensionality modulo Absolute Borel Classes

Vitalij Chatyrko, Yasunao Hattori (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

For each ordinal 1 ≤ α < ω₁ we present separable metrizable spaces X α , Y α and Z α such that (i) f X α , f Y α , f Z α = ω , where f is either trdef or ₀-trsur, (ii) A ( α ) - t r i n d X α = and M ( α ) - t r i n d X α = - 1 , (iii) A ( α ) - t r i n d Y α = - 1 and M ( α ) - t r i n d Y α = , and (iv) A ( α ) - t r i n d Z α = M ( α ) - t r i n d Z α = and A ( α + 1 ) M ( α + 1 ) - t r i n d Z α = - 1 . We also show that there exists no separable metrizable space W α with A ( α ) - t r i n d W α , M ( α ) - t r i n d W α and A ( α ) M ( α ) - t r i n d W α = , where A(α) (resp. M(α)) is the absolutely additive (resp. multiplicative) Borel class.

On subcompactness and countable subcompactness of metrizable spaces in ZF

Kyriakos Keremedis (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We show in ZF that: (i) Every subcompact metrizable space is completely metrizable, and every completely metrizable space is countably subcompact. (ii) A metrizable space 𝐗 = ( X , T ) is countably compact if and only if it is countably subcompact relative to T . (iii) For every metrizable space 𝐗 = ( X , T ) , the following are equivalent: (a) 𝐗 is compact; (b) for every open filter of 𝐗 , { F ¯ : F } ; (c) 𝐗 is subcompact relative to T . We also show: (iv) The negation of each of the statements, (a) every countably subcompact...

Non-normality points and nice spaces

Sergei Logunov (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

J. Terasawa in " β X - { p } are non-normal for non-discrete spaces X " (2007) and the author in “On non-normality points and metrizable crowded spaces” (2007), independently showed for any metrizable crowded space X that each point p of its Čech–Stone remainder X * is a non-normality point of β X . We introduce a new class of spaces, named nice spaces, which contains both of Sorgenfrey line and every metrizable crowded space. We obtain the result above for every nice space.

The Daugavet property and translation-invariant subspaces

Simon Lücking (2014)

Studia Mathematica

Similarity:

Let G be an infinite, compact abelian group and let Λ be a subset of its dual group Γ. We study the question which spaces of the form C Λ ( G ) or L ¹ Λ ( G ) and which quotients of the form C ( G ) / C Λ ( G ) or L ¹ ( G ) / L ¹ Λ ( G ) have the Daugavet property. We show that C Λ ( G ) is a rich subspace of C(G) if and only if Γ Λ - 1 is a semi-Riesz set. If L ¹ Λ ( G ) is a rich subspace of L¹(G), then C Λ ( G ) is a rich subspace of C(G) as well. Concerning quotients, we prove that C ( G ) / C Λ ( G ) has the Daugavet property if Λ is a Rosenthal set, and that L ¹ Λ ( G ) is a poor subspace of L¹(G)...