Breakdown time distributions of systems in series
B. Kopociński, E. Trybusiowa (1966)
Applicationes Mathematicae
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
B. Kopociński, E. Trybusiowa (1966)
Applicationes Mathematicae
Similarity:
Matthev O. Ojo (2001)
Kragujevac Journal of Mathematics
Similarity:
Stevan Pilipović (1988)
Publications de l'Institut Mathématique
Similarity:
A. Derdziński (1977)
Colloquium Mathematicae
Similarity:
Grzegorz Łysik (1990)
Annales Polonici Mathematici
Similarity:
Jan Mikusiński, Roman Sikorski
Similarity:
CONTENTS Introduction........................................................................................................... 3 § 1. The abstraction principle............................................................................... 4 § 2. Fundamental sequences of continuous functions......................................... 5 § 3. The definition of distributions........................................................................ 9 § 4. Distributions as a generalization of...
F. A. Haight (1972)
Applicationes Mathematicae
Similarity:
Emily S. Murphree (1990)
Publications de l'Institut Mathématique
Similarity:
Ricardo Estrada (2010)
Banach Center Publications
Similarity:
It is well-known that any locally Lebesgue integrable function generates a unique distribution, a so-called regular distribution. It is also well-known that many non-integrable functions can be regularized to give distributions, but in general not in a unique fashion. What is not so well-known is that to many distributions one can associate an ordinary function, the function that assigns the distributional point value of the distribution at each point where the value exists, and that...
Pierre Dolbeault (2009)
Banach Center Publications
Similarity:
Anastasiei, Mihai (2001)
Balkan Journal of Geometry and its Applications (BJGA)
Similarity:
Jan Mikusiński, Roman Sikorski
Similarity:
CONTENTS Introduction................................................................................... 3 § 1. Terminology and notation.................................................................................... 4 § 2. Uniform and almost uniform convergence....................................................... 6 § 3. Fundamental sequences of smooth functions............................................... 6 § 4. The definition of distributions................................................................................
Magdalena Skolimowska, Jarosław Bartoszewicz (2006)
Applicationes Mathematicae
Similarity:
We use weighted distributions with a weight function being a ratio of two densities to obtain some results of interest concerning life and residual life distributions. Our theorems are corollaries from results of Jain et al. (1989) and Bartoszewicz and Skolimowska (2006).
Szymon Sznajder (1971)
Colloquium Mathematicae
Similarity: