Displaying similar documents to “On domain decomposition methods for optimal control problems”

On time optimal control of the wave equation, its regularization and optimality system

Karl Kunisch, Daniel Wachsmuth (2013)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

An approximation procedure for time optimal control problems for the linear wave equation is analyzed. Its asymptotic behavior is investigated and an optimality system including the maximum principle and the transversality conditions for the regularized and unregularized problems are derived.

Time Domain Decomposition in Final Value Optimal Control of the Maxwell System

John E. Lagnese, G. Leugering (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We consider a boundary optimal control problem for the Maxwell system with a final value cost criterion. We introduce a time domain decomposition procedure for the corresponding optimality system which leads to a sequence of uncoupled optimality systems of local-in-time optimal control problems. In the limit full recovery of the coupling conditions is achieved, and, hence, the local solutions and controls converge to the global ones. The process is inherently parallel and is suitable...

Some Applications of Optimal Control Theory of Distributed Systems

Alfredo Bermudez (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

In this paper we present some applications of the J.-L. Lions' optimal control theory to real life problems in engineering and environmental sciences. More precisely, we deal with the following three problems: sterilization of canned foods, optimal management of waste-water treatment plants and noise control

Existence of optimal nonanticipating controls in piecewise deterministic control problems

Atle Seierstad (2013)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

Optimal nonanticipating controls are shown to exist in nonautonomous piecewise deterministic control problems with hard terminal restrictions. The assumptions needed are completely analogous to those needed to obtain optimal controls in deterministic control problems. The proof is based on well-known results on existence of deterministic optimal controls.

Analysis of a time optimal control problem related to the management of a bioreactor

Lino J. Alvarez-Vázquez, Francisco J. Fernández, Aurea Martínez (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We consider a time optimal control problem arisen from the optimal management of a bioreactor devoted to the treatment of eutrophicated water. We formulate this realistic problem as a state-control constrained time optimal control problem. After analyzing the state system (a complex system of coupled partial differential equations with non-smooth coefficients for advection-diffusion-reaction with Michaelis-Menten kinetics, modelling the eutrophication processes) we demonstrate the existence...

-Norm minimal control of the wave equation: on the weakness of the bang-bang principle

Martin Gugat, Gunter Leugering (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:


For optimal control problems with ordinary differential equations where the L -norm of the control is minimized, often bang-bang principles hold. For systems that are governed by a hyperbolic partial differential equation, the situation is different: even if a weak form of the bang-bang principle still holds for the wave equation, it implies no restriction on the form of the optimal control. To illustrate that for the Dirichlet boundary control of the wave equation in general not even...