Displaying similar documents to “Factorization makes fast Walsh, PONS and other Hadamard-like transforms easy”

Some relations on Humbert matrix polynomials

Ayman Shehata (2016)

Mathematica Bohemica

Similarity:

The Humbert matrix polynomials were first studied by Khammash and Shehata (2012). Our goal is to derive some of their basic relations involving the Humbert matrix polynomials and then study several generating matrix functions, hypergeometric matrix representations, matrix differential equation and expansions in series of some relatively more familiar matrix polynomials of Legendre, Gegenbauer, Hermite, Laguerre and modified Laguerre. Finally, some definitions of generalized Humbert matrix...

Some relations satisfied by Hermite-Hermite matrix polynomials

Ayman Shehata, Lalit Mohan Upadhyaya (2017)

Mathematica Bohemica

Similarity:

The classical Hermite-Hermite matrix polynomials for commutative matrices were first studied by Metwally et al. (2008). Our goal is to derive their basic properties including the orthogonality properties and Rodrigues formula. Furthermore, we define a new polynomial associated with the Hermite-Hermite matrix polynomials and establish the matrix differential equation associated with these polynomials. We give the addition theorems, multiplication theorems and summation formula for the...

Relations between the orthogonal matrix polynomials on [a, b], Dyukarev-Stieltjes parameters, and Schur complements

A.E. Choque-Rivero (2017)

Special Matrices

Similarity:

We obtain explicit interrelations between new Dyukarev-Stieltjes matrix parameters and orthogonal matrix polynomials on a finite interval [a, b], as well as the Schur complements of the block Hankel matrices constructed through the moments of the truncated Hausdorff matrix moment (THMM) problem in the nondegenerate case. Extremal solutions of the THMM problem are described with the help of matrix continued fractions.

Structured Matrix Methods Computing the Greatest Common Divisor of Polynomials

Dimitrios Christou, Marilena Mitrouli, Dimitrios Triantafyllou (2017)

Special Matrices

Similarity:

This paper revisits the Bézout, Sylvester, and power-basis matrix representations of the greatest common divisor (GCD) of sets of several polynomials. Furthermore, the present work introduces the application of the QR decomposition with column pivoting to a Bézout matrix achieving the computation of the degree and the coeffcients of the GCD through the range of the Bézout matrix. A comparison in terms of computational complexity and numerical effciency of the Bézout-QR, Sylvester-QR,...

A fixed point method to compute solvents of matrix polynomials

Fernando Marcos, Edgar Pereira (2010)

Mathematica Bohemica

Similarity:

Matrix polynomials play an important role in the theory of matrix differential equations. We develop a fixed point method to compute solutions of matrix polynomials equations, where the matricial elements of the matrix polynomial are considered separately as complex polynomials. Numerical examples illustrate the method presented.

Factorizations for q-Pascal matrices of two variables

Thomas Ernst (2015)

Special Matrices

Similarity:

In this second article on q-Pascal matrices, we show how the previous factorizations by the summation matrices and the so-called q-unit matrices extend in a natural way to produce q-analogues of Pascal matrices of two variables by Z. Zhang and M. Liu as follows [...] We also find two different matrix products for [...]

Matrix quadratic equations column/row reduced factorizations and an inertia theorem for matrix polynomials

Irina Karelin, Leonid Lerer (2001)

International Journal of Applied Mathematics and Computer Science

Similarity:

It is shown that a certain Bezout operator provides a bijective correspondence between the solutions of the matrix quadratic equation and factorizatons of a certain matrix polynomial (which is a specification of a Popov-type function) into a product of row and column reduced polynomials. Special attention is paid to the symmetric case, i.e. to the Algebraic Riccati Equation. In particular, it is shown that extremal solutions of such equations correspond to spectral factorizations of...