The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On Almost Generalized Weakly Symmetric Kenmotsu Manifolds”

On weakly φ -symmetric Kenmotsu Manifolds

Shyamal Kumar Hui (2012)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

The object of the present paper is to study weakly φ -symmetric and weakly φ -Ricci symmetric Kenmotsu manifolds. It is shown that weakly φ -symmetric and weakly φ -Ricci symmetric Kenmotsu manifolds are η -Einstein.

On weakly cyclic Ricci symmetric manifolds

A. A. Shaikh, Sanjib Kumar Jana (2006)

Annales Polonici Mathematici

Similarity:

We introduce a type of non-flat Riemannian manifolds called weakly cyclic Ricci symmetric manifolds and study their geometric properties. The existence of such manifolds is shown by several non-trivial examples.

On nowhere weakly symmetric functions and functions with two-element range

Krzysztof Ciesielski, Kandasamy Muthuvel, Andrzej Nowik (2001)

Fundamenta Mathematicae

Similarity:

A function f: ℝ → {0,1} is weakly symmetric (resp. weakly symmetrically continuous) at x ∈ ℝ provided there is a sequence hₙ → 0 such that f(x+hₙ) = f(x-hₙ) = f(x) (resp. f(x+hₙ) = f(x-hₙ)) for every n. We characterize the sets S(f) of all points at which f fails to be weakly symmetrically continuous and show that f must be weakly symmetric at some x ∈ ℝ∖S(f). In particular, there is no f: ℝ → {0,1} which is nowhere weakly symmetric. It is also shown that if at each...