Displaying similar documents to “A correction to “Some mean convergence and complete convergence theorems for sequences of m -linearly negative quadrant dependent random variables””

Pointwise convergence of nonconventional averages

I. Assani (2005)

Colloquium Mathematicae

Similarity:

We answer a question of H. Furstenberg on the pointwise convergence of the averages 1 / N n = 1 N U ( f · R ( g ) ) , where U and R are positive operators. We also study the pointwise convergence of the averages 1 / N n = 1 N f ( S x ) g ( R x ) when T and S are measure preserving transformations.

Complete f -moment convergence for weighted sums of WOD arrays with statistical applications

Xi Chen, Xinran Tao, Xuejun Wang (2023)

Kybernetika

Similarity:

Complete f -moment convergence is much more general than complete convergence and complete moment convergence. In this work, we mainly investigate the complete f -moment convergence for weighted sums of widely orthant dependent (WOD, for short) arrays. A general result on Complete f -moment convergence is obtained under some suitable conditions, which generalizes the corresponding one in the literature. As an application, we establish the complete consistency for the weighted linear estimator...

A note on necessary and sufficient conditions for convergence of the finite element method

Kučera, Václav

Similarity:

In this short note, we present several ideas and observations concerning finite element convergence and the role of the maximum angle condition. Based on previous work, we formulate a hypothesis concerning a necessary condition for O ( h ) convergence and show a simple relation to classical problems in measure theory and differential geometry which could lead to new insights in the area.

On the convergence of sequences of iterates of random-valued vector functions

Rafał Kapica (2007)

Annales Polonici Mathematici

Similarity:

Given a probability space (Ω,,P) and a subset X of a normed space we consider functions f:X × Ω → X and investigate the speed of convergence of the sequence (fⁿ(x,·)) of the iterates f : X × Ω X defined by f¹(x,ω ) = f(x,ω₁), f n + 1 ( x , ω ) = f ( f ( x , ω ) , ω n + 1 ) .

Generalizations to monotonicity for uniform convergence of double sine integrals over ℝ̅²₊

Péter Kórus, Ferenc Móricz (2010)

Studia Mathematica

Similarity:

We investigate the convergence behavior of the family of double sine integrals of the form 0 0 f ( x , y ) s i n u x s i n v y d x d y , where (u,v) ∈ ℝ²₊:= ℝ₊ × ℝ₊, ℝ₊:= (0,∞), and f: ℝ²₊ → ℂ is a locally absolutely continuous function satisfying certain generalized monotonicity conditions. We give sufficient conditions for the uniform convergence of the remainder integrals a b a b to zero in (u,v) ∈ ℝ²₊ as maxa₁,a₂ → ∞ and b j > a j 0 , j = 1,2 (called uniform convergence in the regular sense). This implies the uniform convergence of the partial...

Convergence of sequences of iterates of random-valued vector functions

Rafał Kapica (2003)

Colloquium Mathematicae

Similarity:

Given a probability space (Ω,, P) and a closed subset X of a Banach lattice, we consider functions f: X × Ω → X and their iterates f : X × Ω X defined by f¹(x,ω) = f(x,ω₁), f n + 1 ( x , ω ) = f ( f ( x , ω ) , ω n + 1 ) , and obtain theorems on the convergence (a.s. and in L¹) of the sequence (fⁿ(x,·)).

Complete convergence theorems for normed row sums from an array of rowwise pairwise negative quadrant dependent random variables with application to the dependent bootstrap

Andrew Rosalsky, Yongfeng Wu (2015)

Applications of Mathematics

Similarity:

Let { X n , j , 1 j m ( n ) , n 1 } be an array of rowwise pairwise negative quadrant dependent mean 0 random variables and let 0 < b n . Conditions are given for j = 1 m ( n ) X n , j / b n 0 completely and for max 1 k m ( n ) | j = 1 k X n , j | / b n 0 completely. As an application of these results, we obtain a complete convergence theorem for the row sums j = 1 m ( n ) X n , j * of the dependent bootstrap samples { { X n , j * , 1 j m ( n ) } , n 1 } arising from a sequence of i.i.d. random variables { X n , n 1 } .

Linearized plasticity is the evolutionary Γ -limit of finite plasticity

Alexander Mielke, Ulisse Stefanelli (2013)

Journal of the European Mathematical Society

Similarity:

We provide a rigorous justification of the classical linearization approach in plasticity. By taking the small-deformations limit, we prove via Γ -convergence for rate-independent processes that energetic solutions of the quasi-static finite-strain elastoplasticity system converge to the unique strong solution of linearized elastoplasticity.

Nilakantha's accelerated series for π

David Brink (2015)

Acta Arithmetica

Similarity:

We show how the idea behind a formula for π discovered by the Indian mathematician and astronomer Nilakantha (1445-1545) can be developed into a general series acceleration technique which, when applied to the Gregory-Leibniz series, gives the formula π = n = 0 ( ( 5 n + 3 ) n ! ( 2 n ) ! ) / ( 2 n - 1 ( 3 n + 2 ) ! ) with convergence as 13 . 5 - n , in much the same way as the Euler transformation gives π = n = 0 ( 2 n + 1 n ! n ! ) / ( 2 n + 1 ) ! with convergence as 2 - n . Similar transformations lead to other accelerated series for π, including three “BBP-like” formulas, all of which are collected in...

Regular statistical convergence of double sequences

Ferenc Móricz (2005)

Colloquium Mathematicae

Similarity:

The concepts of statistical convergence of single and double sequences of complex numbers were introduced in [1] and [7], respectively. In this paper, we introduce the concept indicated in the title. A double sequence x j k : ( j , k ) ² is said to be regularly statistically convergent if (i) the double sequence x j k is statistically convergent to some ξ ∈ ℂ, (ii) the single sequence x j k : k is statistically convergent to some ξ j for each fixed j ∈ ℕ ∖ ₁, (iii) the single sequence x j k : j is statistically convergent...

Limit theorems for sums of dependent random vectors in R d

Andrzej Kłopotowski

Similarity:

CONTENTSIntroduction.......................................................................................................................................................................... 5 I. Infinitely divisible probability measures on R d ....................................................................................... 6 II. The classical limit theorems for sums of independent random vectors................................................ 14 III. Convergence in law to ℒ ( a ,...

On the uniform convergence of double sine series

Péter Kórus, Ferenc Móricz (2009)

Studia Mathematica

Similarity:

Let a single sine series (*) k = 1 a k s i n k x be given with nonnegative coefficients a k . If a k is a “mean value bounded variation sequence” (briefly, MVBVS), then a necessary and sufficient condition for the uniform convergence of series (*) is that k a k 0 as k → ∞. The class MVBVS includes all sequences monotonically decreasing to zero. These results are due to S. P. Zhou, P. Zhou and D. S. Yu. In this paper we extend them from single to double sine series (**) k = 1 l = 1 c k l s i n k x s i n l y , even with complex coefficients c k l . We also...

On the convergence theory of double K -weak splittings of type II

Vaibhav Shekhar, Nachiketa Mishra, Debasisha Mishra (2022)

Applications of Mathematics

Similarity:

Recently, Wang (2017) has introduced the K -nonnegative double splitting using the notion of matrices that leave a cone K n invariant and studied its convergence theory by generalizing the corresponding results for the nonnegative double splitting by Song and Song (2011). However, the convergence theory for K -weak regular and K -nonnegative double splittings of type II is not yet studied. In this article, we first introduce this class of splittings and then discuss the convergence theory...

Some limit theorems for m -pairwise negative quadrant dependent random variables

Yongfeng Wu, Jiangyan Peng (2018)

Kybernetika

Similarity:

The authors first establish the Marcinkiewicz-Zygmund inequalities with exponent p ( 1 p 2 ) for m -pairwise negatively quadrant dependent ( m -PNQD) random variables. By means of the inequalities, the authors obtain some limit theorems for arrays of rowwise m -PNQD random variables, which extend and improve the corresponding results in [Y. Meng and Z. Lin (2009)] and [H. S. Sung (2013)]. It is worthy to point out that the open problem of [H. S. Sung, S. Lisawadi, and A. Volodin (2008)] can be...