Displaying similar documents to “WORM Colorings of Planar Graphs”

Coloring with no 2-colored P 4 's.

Albertson, Michael O., Chappell, Glenn G., Kierstead, H.A., Kündgen, André, Ramamurthi, Radhika (2004)

The Electronic Journal of Combinatorics [electronic only]

Similarity:

Analogues of cliques for oriented coloring

William F. Klostermeyer, Gary MacGillivray (2004)

Discussiones Mathematicae Graph Theory

Similarity:

We examine subgraphs of oriented graphs in the context of oriented coloring that are analogous to cliques in traditional vertex coloring. Bounds on the sizes of these subgraphs are given for planar, outerplanar, and series-parallel graphs. In particular, the main result of the paper is that a planar graph cannot contain an induced subgraph D with more than 36 vertices such that each pair of vertices in D are joined by a directed path of length at most two.

The set chromatic number of a graph

Gary Chartrand, Futaba Okamoto, Craig W. Rasmussen, Ping Zhang (2009)

Discussiones Mathematicae Graph Theory

Similarity:

For a nontrivial connected graph G, let c: V(G)→ N be a vertex coloring of G where adjacent vertices may be colored the same. For a vertex v of G, the neighborhood color set NC(v) is the set of colors of the neighbors of v. The coloring c is called a set coloring if NC(u) ≠ NC(v) for every pair u,v of adjacent vertices of G. The minimum number of colors required of such a coloring is called the set chromatic number χₛ(G) of G. The set chromatic numbers of some well-known classes of graphs...

Backbone colorings along stars and matchings in split graphs: their span is close to the chromatic number

Hajo Broersma, Bert Marchal, Daniel Paulusma, A.N.M. Salman (2009)

Discussiones Mathematicae Graph Theory

Similarity:

We continue the study on backbone colorings, a variation on classical vertex colorings that was introduced at WG2003. Given a graph G = (V,E) and a spanning subgraph H of G (the backbone of G), a λ-backbone coloring for G and H is a proper vertex coloring V→ {1,2,...} of G in which the colors assigned to adjacent vertices in H differ by at least λ. The algorithmic and combinatorial properties of backbone colorings have been studied for various types of backbones in a number of papers....

Bounds for the b-Chromatic Number of Subgraphs and Edge-Deleted Subgraphs

P. Francis, S. Francis Raj (2016)

Discussiones Mathematicae Graph Theory

Similarity:

A b-coloring of a graph G with k colors is a proper coloring of G using k colors in which each color class contains a color dominating vertex, that is, a vertex which has a neighbor in each of the other color classes. The largest positive integer k for which G has a b-coloring using k colors is the b-chromatic number b(G) of G. In this paper, we obtain bounds for the b- chromatic number of induced subgraphs in terms of the b-chromatic number of the original graph. This turns out to be...

Hardness Results for Total Rainbow Connection of Graphs

Lily Chen, Bofeng Huo, Yingbin Ma (2016)

Discussiones Mathematicae Graph Theory

Similarity:

A total-colored path is total rainbow if both its edges and internal vertices have distinct colors. The total rainbow connection number of a connected graph G, denoted by trc(G), is the smallest number of colors that are needed in a total-coloring of G in order to make G total rainbow connected, that is, any two vertices of G are connected by a total rainbow path. In this paper, we study the computational complexity of total rainbow connection of graphs. We show that deciding whether...

Worm Colorings

Wayne Goddard, Kirsti Wash, Honghai Xu (2015)

Discussiones Mathematicae Graph Theory

Similarity:

Given a coloring of the vertices, we say subgraph H is monochromatic if every vertex of H is assigned the same color, and rainbow if no pair of vertices of H are assigned the same color. Given a graph G and a graph F, we define an F-WORM coloring of G as a coloring of the vertices of G without a rainbow or monochromatic subgraph H isomorphic to F. We present some results on this concept especially as regards to the existence, complexity, and optimization within certain graph classes....

Rainbow Connection Number of Graphs with Diameter 3

Hengzhe Li, Xueliang Li, Yuefang Sun (2017)

Discussiones Mathematicae Graph Theory

Similarity:

A path in an edge-colored graph G is rainbow if no two edges of the path are colored the same. The rainbow connection number rc(G) of G is the smallest integer k for which there exists a k-edge-coloring of G such that every pair of distinct vertices of G is connected by a rainbow path. Let f(d) denote the minimum number such that rc(G) ≤ f(d) for each bridgeless graph G with diameter d. In this paper, we shall show that 7 ≤ f(3) ≤ 9.

Unique-Maximum Coloring Of Plane Graphs

Igor Fabrici, Frank Göring (2016)

Discussiones Mathematicae Graph Theory

Similarity:

A unique-maximum k-coloring with respect to faces of a plane graph G is a coloring with colors 1, . . . , k so that, for each face of G, the maximum color occurs exactly once on the vertices of α. We prove that any plane graph is unique-maximum 3-colorable and has a proper unique-maximum coloring with 6 colors.