Displaying similar documents to “Bifurcations of the time-fractional generalized coupled Hirota-Satsuma KdV system”

IVPs for singular multi-term fractional differential equations with multiple base points and applications

Yuji Liu, Pinghua Yang (2014)

Applicationes Mathematicae

Similarity:

The purpose of this paper is to study global existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations. By constructing a special Banach space and employing fixed-point theorems, some sufficient conditions are obtained for the global existence and uniqueness of solutions of this kind of equations involving Caputo fractional derivatives and multiple base points. We apply the results to solve the forced logistic model with multi-term...

On contraction principle applied to nonlinear fractional differential equations with derivatives of order α ∈ (0,1)

Małgorzata Klimek (2011)

Banach Center Publications

Similarity:

One-term and multi-term fractional differential equations with a basic derivative of order α ∈ (0,1) are solved. The existence and uniqueness of the solution is proved by using the fixed point theorem and the equivalent norms designed for a given value of parameters and function space. The explicit form of the solution obeying the set of initial conditions is given.

Time fractional Kupershmidt equation: symmetry analysis and explicit series solution with convergence analysis

Astha Chauhan, Rajan Arora (2019)

Communications in Mathematics

Similarity:

In this work, the fractional Lie symmetry method is applied for symmetry analysis of time fractional Kupershmidt equation. Using the Lie symmetry method, the symmetry generators for time fractional Kupershmidt equation are obtained with Riemann-Liouville fractional derivative. With the help of symmetry generators, the fractional partial differential equation is reduced into the fractional ordinary differential equation using Erdélyi-Kober fractional differential operator. The conservation...

Modelling of Piezothermoelastic Beam with Fractional Order Derivative

Rajneesh Kumar, Poonam Sharma (2016)

Curved and Layered Structures

Similarity:

This paper deals with the study of transverse vibrations in piezothermoelastic beam resonators with fractional order derivative. The fractional order theory of thermoelasticity developed by Sherief et al. [1] has been used to study the problem. The expressions for frequency shift and damping factor are derived for a thermo micro-electromechanical (MEM) and thermo nano-electromechanical (NEM) beam resonators clamped on one side and free on another. The effect of fractional order derivative...

Theorems on some families of fractional differential equations and their applications

Gülçin Bozkurt, Durmuş Albayrak, Neşe Dernek (2019)

Applications of Mathematics

Similarity:

We use the Laplace transform method to solve certain families of fractional order differential equations. Fractional derivatives that appear in these equations are defined in the sense of Caputo fractional derivative or the Riemann-Liouville fractional derivative. We first state and prove our main results regarding the solutions of some families of fractional order differential equations, and then give examples to illustrate these results. In particular, we give the exact solutions for...